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Topic modeling - Motivation

Topic modeling provides methods for automatically organizing,

understanding, searching, and summarizing large electronic archives.
@ Uncover the hidden topical patterns that pervade the collection.
® Annotate the documents according to those topics.

©® Use the annotations to organize, summarize, and search the texts.



Discover topics from a corpus
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Model connections between topics
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Model the evolution of topics over time (or other relevant variable)
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Connection to ML research

From a machine learning perspective, topic modeling is a case study in
applying hierarchical Bayesian models to grouped data, like documents or
images. Topic modeling research touches on

Directed graphical models

Conjugate priors and nonconjugate priors

Time series modeling

Modeling with graphs

Hierarchical Bayesian methods

Fast approximate posterior inference (MCMC, variational methods)
Exploratory data analysis

Model selection and nonparametric Bayesian methods

Mixed membership models



Intuition behind LDA
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Simple intuition: Documents exhibit multiple topics.



Generative model

Topic proportions and

Documents )
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e Each document is a random mixture of corpus-wide topics

e Each word is drawn from one of those topics



The posterior distribution

) Topic proportions and
Topics Documents assignments
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e In reality, we only observe the documents

e Our goal is to infer the underlying topic structure



Previously

o text categorization through Naive Bayes

e Generative model: first generate a document category,
then words in the document (unigram model)

///\\
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e Inference: obtain posterior over document categories
using Bayes rule (argmax to choose the category)

P(Catlw, )= P (Wl,,,,}) |(Cat)1;(Cat)
Wl...n




What we're doing here

Supervised categorization requires hand-labeling
documents

This can be extremely time-consuming
Unlabeled documents are cheap

So we’'d really like to do text
categorization

Now we’ll look at unsupervised learning within the
Naive Bayes model



Compact graphical model representations

* We're going to lean heavily on graphical model
representations here.

Gab
W) () () () — ()

 We'll use a more compact notation:

@ “‘generate a word from Cat n times”

n




Graphical models (Aside)
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e Nodes are random variables
e Edges denote possible dependence

Observed variables are shaded

Plates denote replicated structure

Structure of the graph defines the pattern of conditional dependence
between the ensemble of random variables

E.g., this graph corresponds to

p(y:x1s- . xn) = p(y) ][ Pxa | ¥)



 Now suppose that Cat isn’'t observed

e \We need to learn two distributions: @
o P(Cat) n

e P(wlCat)

e How do we do this?
e \We might use the method of maximum likelihood (MLE)
e But it turns out that the likelihood surface is highly non-
convex and lots of information isn’'t contained in a point
estimate
e Alternative: Bayesian methods



Bayesian document categorization

priors
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Latent Dirichlet allocation
(Blei, Ng, & Jordan, 2001; 2003)

Main difference: one topic

per word
/ distribution over topics
Dirichlet priors for each document
/ 0 (d) ~ Dirichlet(c)

distribution over words topic assignment
for each topic ~_ - for each word

¢ () ~ Dirichlet(p) z,~ Discrete(0 (@)
T word generated from

igned topic
|~  assigne
// w; ~ Discrete(¢ (2))




A generative model for documents

w P(w|Cat = 1) w P(w|Cat = 2)
HEART 0.2 HEART 0.0
LOVE 0.2 LOVE 0.0
SOUL 0.2 SOUL 0.0
TEARS 0.2 TEARS 0.0
JOY 0.2 JOY 0.0
SCIENTIFIC 0.0 SCIENTIFIC 0.2
KNOWLEDGE 0.0 KNOWLEDGE 0.2
WORK 0.0 WORK 0.2
RESEARCH 0.0 RESEARCH 0.2
MATHEMATICS 0.0 MATHEMATICS 0.2

topic 1 topic 2



Choose mixture weights for each document, generate “bag of words”

1P(z=1), P(z=2)}

{O 1} MATHEMATICS KNOWLEDGE RESEARCH WORK MATHEMATICS
’ RESEARCH WORK SCIENTIFIC MATHEMATICS WORK

SCIENTIFIC KNOWLEDGE MATHEMATICS SCIENTIFIC
{0.25, 0.75} HEART LOVE TEARS KNOWLEDGE HEART

{0.5, 0.5} MATHEMATICS HEART RESEARCH LOVE MATHEMATICS
WORK TEARS SOUL KNOWLEDGE HEART

{0.75, 0.25} WORK JOY SOUL TEARS MATHEMATICS
TEARS LOVE LOVE LOVE SOUL

{1, 0} TEARS LOVE JOY SOUL LOVE TEARS SOUL SOUL TEARS JOY



Dirichlet priors

e Multivariate equivalent of Beta distribution

2(01Cat) = LY

L)' L1
« Hyperparameters o determine form of the prior
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Dirichlet Examples
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Darker implies lower magnitude

\alpha < 1 leads to sparser topics



|
Matrix factorization interpretation

documents topics
o~ documents
. — 3 = 3
e P(w) = 5 = |2 P(z)
o ; N 9
3 Q.

Maximume-likelihood estimation is finding
the factorization that minimizes KL

divergence
(Hofmann, 1999)



Interpretable topics

DISEASE WATER MIND STORY FIELD SCIENCE BALL JOoB
BACTERIA FISH WORLD STORIES  MAGNETIC STUDY GAME WORK
DISEASES SEA DREAM TELL MAGNET  SCIENTISTS TEAM JOBS
GERMS SWIM DREAMS CHARACTER WIRE SCIENTIFIC FOOTBALL CAREER
FEVER SWIMMING THOUGHT CHARACTERS NEEDLE KNOWLEDGE BASEBALL EXPERIENCE
CAUSE POOL IMAGINATION  AUTHOR CURRENT WORK PLAYERS EMPLOYMENT
CAUSED LIKE MOMENT READ COIL RESEARCH PLAY OPPORTUNITIES
SPREAD SHELL THOUGHTS TOLD POLES CHEMISTRY  FIELD WORKING
VIRUSES SHARK OWN SETTING IRON  TECHNOLOGY PLAYER TRAINING
INFECTION TANK REAL TALES COMPASS MANY  BASKETBALL  SKILLS
VIRUS SHELLS LIFE PLOT LINES MATHEMATICS COACH CAREERS
MICROORGANISMS SHARKS IMAGINE TELLING CORE BIOLOGY PLAYED POSITIONS
PERSON DIVING SENSE SHORT ELECTRIC FIELD PLAYING FIND
INFECTIOUS  DOLPHINS CONSCIOUSNESS FICTION  DIRECTION  PHYSICS HIT POSITION
COMMON SWAM STRANGE ACTION FORCE LABORATORY TENNIS FIELD
CAUSING LONG FEELING TRUE MAGNETS  STUDIES TEAMS  OCCUPATIONS
SMALLPOX SEAL WHOLE EVENTS BE WORLD GAMES REQUIRE
BODY DIVE BEING TELLS MAGNETISM SCIENTIST  SPORTS OPPORTUNITY
INFECTIONS DOLPHIN MIGHT TALE POLE STUDYING BAT EARN
CERTAIN  UNDERWATER HOPE NOVEL INDUCED  SCIENCES TERRY ABLE

each column shows words from a single topic, ordered by P(w|z)



Handling multiple senses

DISEASE WATER MIND STORY FIELD SCIENCE BALL JOoB
BACTERIA FISH WORLD STORIES  MAGNETIC STUDY GAME WORK
DISEASES SEA DREAM TELL MAGNET  SCIENTISTS TEAM JOBS
GERMS SWIM DREAMS CHARACTER WIRE SCIENTIFIC FOOTBALL CAREER
FEVER SWIMMING THOUGHT CHARACTERS NEEDLE KNOWLEDGE BASEBALL EXPERIENCE
CAUSE POOL IMAGINATION  AUTHOR CURRENT WORK PLAYERS EMPLOYMENT
CAUSED LIKE MOMENT READ COIL RESEARCH PLAY OPPORTUNITIES
SPREAD SHELL THOUGHTS TOLD POLES CHEMISTRY  FIELD WORKING
VIRUSES SHARK OWN SETTING IRON  TECHNOLOGY PLAYER TRAINING
INFECTION TANK REAL TALES COMPASS MANY  BASKETBALL  SKILLS
VIRUS SHELLS LIFE PLOT LINES MATHEMATICS COACH CAREERS
MICROORGANISMS SHARKS IMAGINE TELLING CORE BIOLOGY PLAYED POSITIONS
PERSON DIVING SENSE SHORT ELECTRIC FIELD PLAYING FIND
INFECTIOUS  DOLPHINS CONSCIOUSNESS FICTION  DIRECTION  PHYSICS HIT POSITION
COMMON SWAM STRANGE ACTION FORCE LABORATORY TENNIS FIELD
CAUSING LONG FEELING TRUE MAGNETS  STUDIES TEAMS  OCCUPATIONS
SMALLPOX SEAL WHOLE EVENTS BE WORLD GAMES REQUIRE
BODY DIVE BEING TELLS MAGNETISM SCIENTIST  SPORTS OPPORTUNITY
INFECTIONS DOLPHIN MIGHT TALE POLE STUDYING BAT EARN
CERTAIN  UNDERWATER HOPE NOVEL INDUCED  SCIENCES TERRY ABLE

each column shows words from a single topic, ordered by P(w|z)



Explore and browse document collections

Chance and Statistical Significance in Protein and
DNA Sequence Analysis

Samuel Karlin and Volker Brendel

Top words from the top topics (by term score) Expected topic proportiong
sequence measured  residuse  computer

region average binding methods

per range domaing number 2
identified values helix two s
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two size regions design
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[SHEBStEal approaches hel ; ( configurations in protein and
nucleic acid sequence metheds arc discussed: () score-

88888 sequence analysis thal 2 ing anomalies in local
sequence text and for (i) quantile ‘amino
acld usage that reveal iti in proteins and evolutionary SRNONS!

and (iii) r-scan to the analysis of spacings of sequence
markers.

Top Ten Similar Documents

Exhaustive Matching of the Entire Protein Sequence Database

How Big Is the Universe of Exons?

Counting and Discounting the Universe of Exons

Detecting Subtle Sequence Signals: A Gibbs Sampling Strategy for Multiple Alignment
Ancient Conserved Regions in New Gene Sequences and the Protsin Databases

A Method to Identify Protein Sequences that Fold into a Known Three- Dimensional Structure
Testing the Exon Theory of Genes: The Evidence from Protsin Structure
Predicting Coied Coils from Protein

Genome Sequence of the Nematode C. elegans: A Platform for Investigating Biology



Why does LDA “work” ?

Why does the LDA posterior put “topical” words together?

e Word probabilities are maximized by dividing the words among the
topics. (More terms means more mass to be spread around.)

e In a mixture, this is enough to find clusters of co-occurring words.

e In LDA, the Dirichlet on the topic proportions can encourage
sparsity, i.e., a document is penalized for using many topics.

e Loosely, this can be thought of as softening the strict definition of
“co-occurrence” in a mixture model.

e This flexibility leads to sets of terms that more tightly co-occur.



Inverting the generative model

e Maximum a posteriori estimation (EM)
e e.g., Hofmann (1999)

e Deterministic approximate algorithms
e variational EM; Blei, Ng & Jordan (2001; 2003)
e expectation propagation; Minka & Lafferty (2002)

* Markov chain Monte Carlo
e full Gibbs sampler; Pritchard et al. (2000)
e collapsed Gibbs sampler; Griffiths & Steyvers (2004)



The collapsed Gibbs sampler

e Using conjugacy of Dirichlet and multinomial
distributions, integrate out continuous parameters

GlLre +a)  rao)
P@)= [Pal®p©de  =[[-r oS n? +a)

.00 +B)  rowp)

P(w|z)= IP(W |2, D) p(P)dD = ];l rp)” F(E ) 4 B)

e Defines a distribution on discrete ensembles z

P(w|z)P(z)
» P(w|z)P(z)

P(z|w)=



The collapsed Gibbs sampler

« Sample each z; conditioned on z

(z;) (d;)
n"+pB n'’+a

P(Zi |W9Z—i) X (:i) (i].)
n"+Wp n"’ +Ta

e This is nicer than your average Gibbs sampler:
e memory: counts can be cached in two sparse matrices

e optimization: no special functions, simple arithmetic
 the distributions on ® and © are analytic given z and w,

and can later be found for each sample




Gibbs sampling in LDA

iteration

1
l W; d i Zj
1 MATHEMATICS 1 2
2 KNOWLEDGE 1 2
3 RESEARCH 1 1
4 WORK 1 2
5 MATHEMATICS 1 1
6 RESEARCH 1 2
7 WORK 1 2
8 SCIENTIFIC 1 1
9 MATHEMATICS 1 2
10 WORK 1 1
11 SCIENTIFIC 2 1
12 KNOWLEDGE 2 1

50 JOY 5 2



Gibbs sampling in LDA

iteration
1 2
l W; d i Zj Zj
1 MATHEMATICS 1 2 ?
2 KNOWLEDGE 1 2
3 RESEARCH 1 1
4 WORK 1 2
5 MATHEMATICS 1 1
6 RESEARCH 1 2
7 WORK 1 2
8 SCIENTIFIC 1 1
9 MATHEMATICS 1 2
10 WORK 1 1
11 SCIENTIFIC 2 1
12 KNOWLEDGE 2 1

50 JOY 5 2



Gibbs sampling in LDA

iteration
1 2
l W; d i Zj Zj
1 MATHEMATICS 1 2 ?
2 KNOWLEDGE 1 2
3 RESEARCH 1 1
4 WORK 1 2
5 MATHEMATICS 1 1
6 RESEARCH 1 2
7 WORK 1 2
8 SCIENTIFIC 1 1
9 MATHEMATICS 1 2
10 WORK 1 1
11 SCIENTIFIC 2 1
12 KNOWLEDGE 2 1
50 JOY 5 2

n(wi) + 3 n(d )+ a

nt) Wl ”‘)—I—Ta
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P(z; = jlz—:,w)



Gibbs sampling in LDA

iteration
1 2
l W; d i Zj Zj
1 MATHEMATICS 1 2 ?
2 KNOWLEDGE 1
3 RESEARCH 1
4 WORK 1
5 MATHEMATICS 1
6 RESEARCH 1
7 WORK 1
8 SCIENTIFIC 1
9 MATHEMATICS 1
10 WORK 1
11 SCIENTIFIC 2
12 KNOWLEDGE 2
50 JOY 5
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Gibbs sampling in LDA

iteration
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Gibbs sampling in LDA
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Gibbs sampling in LDA
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Gibbs sampling in LDA
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Gibbs sampling in LDA

iteration
1 2 1000
] w; d,; Z; Z; Z;
1 MATHEMATICS 1 2 2 2
2 KNOWLEDGE 1 2 1 2
3 RESEARCH 1 1 1 2
4 WORK 1 2 2 1
5 MATHEMATICS 1 1 2 2
6 RESEARCH 1 2 2 2
7 WORK 1 2 2 2
8 SCIENTIFIC 1 1 1 1
9 MATHEMATICS 1 2 2 2
10 WORK 1 1 2 2
11 SCIENTIFIC 2 1 1 2
12 KNOWLEDGE 2 1 2 2
50 JOY 5 2 1 1
n(w-*)- + B n(d L +a

nt) Wl ”‘)—I—Ta

_7".7

P(z; = jlz—:,w)



Effects of hyperparameters

e ¢ and p control the relative sparsity of ® and ©

« smaller o, fewer topics per document

« smaller 3, fewer words per topic

* (Good assignments z compromise in sparsit

/V
Dirichlet priors

distribution over words
for each topic

¢ () ~ Dirichlet(p)

4

distribution over topics
for each document
-

\‘

A/ 0 (@) ~ Dirichlet(a)

topic assignment
- for each word

¥ /

6 r z,~ Discrete(6 (9))

word generated from
- assigned topic

0 — w, ~ Discrete(¢ @)
Ny |D




Varying o
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Varying 3
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Number of words

p=1
i i
p=10
1
g =100

Topic




Learning the number of topics
|

e (Can use standard Bayes factor methods to
evaluate models of different dimensionality

o Alternative: nonparametric Bayes
e fixed number of topics per document, unbounded

number of topics per corpus
(Blei, Griffiths, Jordan, & Tenenbaum, 2004)
e unbounded number of topics for both (the

hierarchical Dirichlet process)
(Teh, Jordan, Beal, & Blei, 2004)



Analysis of PNAS abstracts

e Test topic models with a real database of
scientific papers from PNAS

o All 28,154 abstracts from 1991-2001

e All words occurring in at least five abstracts,
not on “stop” list (20,551)

e Total of 3,026,970 tokens in corpus

(Griffiths & Steyvers, 2004)



A selection of topics

FORCE
SURFACE
MOLECULES
SOLUTION
SURFACES
MICROSCOPY
WATER
FORCES
PARTICLES
STRENGTH
POLYMER
IONIC
ATOMIC
AQUEOQUS
MOLECULAR
PROPERTIES
LIQUID
SOLUTIONS
BEADS
MECHANICAL

HIV
VIRUS
INFECTED

IMMUNODEFICIENCY

CD4
INFECTION
HUMAN
VIRAL
TAT
GP120
REPLICATION
TYPE
ENVELOPE
AIDS
REV
BLOOD
CCR5
INDIVIDUALS
ENV
PERIPHERAL

MUSCLE
CARDIAC
HEART
SKELETAL
MYOCYTES
VENTRICULAR
MUSCLES
SMOOTH
HYPERTROPHY
DYSTROPHIN
HEARTS
CONTRACTION
FIBERS
FUNCTION
TISSUE
RAT
MYOCARDIAL
ISOLATED
MYOD
FAILURE

STRUCTURE
ANGSTROM
CRYSTAL
RESIDUES
STRUCTURES
STRUCTURAL
RESOLUTION
HELIX
THREE
HELICES
DETERMINED
RAY
CONFORMATION
HELICAL
HYDROPHOBIC
SIDE
DIMENSIONAL
INTERACTIONS
MOLECULE
SURFACE

NEURONS
BRAIN
CORTEX
CORTICAL
OLFACTORY
NUCLEUS
NEURONAL
LAYER
RAT
NUCLEI
CEREBELLUM
CEREBELLAR
LATERAL
CEREBRAL
LAYERS
GRANULE
LABELED
HIPPOCAMPUS
AREAS
THALAMIC

TUMOR
CANCER
TUMORS

HUMAN

CELLS
BREAST
MELANOMA
GROWTH
CARCINOMA
PROSTATE
NORMAL
CELL
METASTATIC
MALIGNANT
LUNG
CANCERS
MICE
NUDE
PRIMARY
OVARIAN



Software

MALLET (java)

in R: topicmodels and Ida packages
lda (python)

LDAvis (R)

... (lots more!)



Web demo

http://cpsievert.github.io/LDAvis/reviews/reviews.html



http://cpsievert.github.io/LDAvis/reviews/reviews.html

