Vector Semantics

Introduction

Klinton Bicknell

(borrowing from: Dan Jurafsky and Jim Martin)

Why vector models of meaning?
computing the similarity between words

words are related to each other!

“fast” is similar to “rapid”
“tall” is similar to “height”

Question answering:

Q: “How tall is Mt. Everest?”
Candidate A: “The official height of Mount Everest is 29029 feet”

2

Word similarity for plagiarism detection

MAINFRAMES
Mainframes usually are referred those

MAINFRAMES
Mainframes are primarily referred to large

computers with rapid, advanced
processing capabilities that can
execute and perform tasks equivalent
to many Personal Computers (PCs)
machines networked together. Itis
characterized with high quantity
Random Access Memory (RAM), very
large secondary storage devices, and
high-speed processors to cater for the
needs of the computers under its
service.

Consisting of advanced components,

mainframes have the capability of
running multiple large applications
required by many and most enterprises
and organizations. This is one of its
advantages. Mainframes are also
suitable to cater for those applications
(programs) or files that are of very high

computers with fast, advanced
processing capabilities that could
perform by itself tasks that may require
a lot of Personal Computers (PC)
Machines. Usually mainframes would
have lots of RAMs, very large
secondary storage devices, and very
fast processors to cater for the needs
of those computers under its service.

Due to the advanced components

mainframes have, these computers
have the capability of running multiple
large applications required by most
enterprises, which is one of its
advantage. Mainframes are also
suitable to cater for those applications
or files that are of very large demand

Semantic Broadening

40

30

20

10 7

Word similarity for historical change:

semantic change over time

Sagi, Kaufmann Clark 2013

<1250
Middle 1350-1500
e Modern 1500-1710

dog deer hound

Kulkarni, Al-Rfou, Perozzi, Skiena 2015

gaYg_,Q___. ga.YJQZS_

' 8aY 1o

9aYxos

b

e “0Y 00

Problems with thesaurus-based meaning

e We don’t have a thesaurus for every language

e We can’t have a thesaurus for every year

e For change detection, we need to compare word meanings in
year t to year t+1

e Thesauruses have problems with recall

e Many words and phrases are missing
e Thesauri work less well for verbs, adjectives

Distributional models of meaning
= vector-space models of meaning
= vector semantics

Intuitions: Zellig Harris (1954):

e “oculist and eye-doctor ... occur in almost the same
environments”

e “If A and B have almost identical environments we say that
they are synonyms.”

Firth (1957):
e “You shall know a word by the company it keeps!”

Intuition of distributional word similarity

Nida example: Suppose | asked you what is tesgiiino?

A bottle of tesgqgiiino is on the table
Everybody likes tesgiiino

Tesgiiino makes you drunk
We make tesgiiino out of corn.

From context words humans can guess tesgtlino means
e an alcoholic beverage like beer

e |ntuition for algorithm:

 Two words are similar if they have similar word contexts.

Three kinds of vector models

Sparse vector representations
1. Mutual-information weighted word co-occurrence matrices

Dense vector representations:
2. Singular value decomposition (and Latent Semantic Analysis)
3. Neural-network-inspired models (skip-grams, CBOW)

Shared intuition

Model the meaning of a word by “embedding” in a vector space.
The meaning of a word is a vector of numbers

e Vector models are also called “embeddings”.

Contrast: word meaning is represented in many computational
linguistic applications by a vocabulary index (“word number 545”)

Old philosophy joke:

Q: What’s the meaning of life?
A: LIFE

Vector Semantics

Words and co-occurrence
vectors

Co-occurrence Matrices

e We represent how often a word occurs in a document

* Term-document matrix

e Or how often a word occurs with another
 Term-term matrix
(or word-word co-occurrence matrix
or word-context matrix)

11

Term-document matrix

e Each cell: count of word w in a document d:

e Each document is a count vectorlin Nv: a column below

As You Like It Twelfth Night Julius Caesar Henry V

battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5

clown 6 117 0 0

12

Similarity in term-document matrices
Two documents are similar if their vectors are similar

As You Like It Twelfth Night Julius Caesar HenryV

battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0) 0

13

The words in a term-document matrix

e Each word is a count vector|in ND: a row below

As You Like It Twelfth Night Julius Caesar HenryV

battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5

clown 6 117 0 0

14

The words in a term-document matrix

e Two words are similar if their vectors are similar

As You Like It Twelfth Night Julius Caesar Henry V

battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5

clown 6 117 0 0

15

16

The word-word or word-context matrix

Instead of entire documents, use smaller contexts
e Paragraph
e Window of + 4 words

A word is now defined by a vector over counts of
context words

Instead of each vector being of length D
Each vector is now of length | V|
The word-word matrix is |V|x]|V/|

Word-Word matrix
Sample contexts + 7 words

sugar, a sliced lemon, a tablespoonful of apricot preserve or jam, a pinch each of,
their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she hkened
well suited to programming on the digital computer. In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

aardvark computer data pinch result sugar

apricot 0 0 0) 0
pineapple

0 0 0 0
digital 0 2 1 0 1 0
information 0 1 6 4

Word-word matrix

°e \We showed only 4x6, but the real matrix is 50,000 x 50,000
e So it’s very sparse
e Most values are 0.
e That’s OK, since there are lots of efficient algorithms for sparse matrices.
e The size of windows depends on your goals
e The shorter the windows , the more syntactic the representation
+ 1-3 very syntacticy
e The longer the windows, the more semantic the representation
+ 4-10 more semanticy

18

2 kinds of co-occurrence between 2 words
(Schitze and Pedersen, 1993)

e First-order co-occurrence (syntagmatic association):
 They are typically nearby each other.
e wrote is a first-order associate of book or poem.

e Second-order co-occurrence (paradigmatic association):

e They have similar neighbors.

e wrote is a second- order associate of words like said or
remarked.

19

Vector Semantics

Positive Pointwise Mutual
Information (PPMI)

Problem with raw counts

e Raw word frequency is not a great measure of
association between words

e |t’s very skewed
e “the” and “of” are very frequent, but maybe not the most
discriminative

e We'd rather have a measure that asks whether a context word is
particularly informative about the target word.

e Positive Pointwise Mutual Information (PPMI)

21

Pointwise Mutual Information

°*Pointwise mutual information:

Do events x and y co-occur more than if they were independent?

PMICX.Y) = log, ot

PMI between two words:

Do words x and y co-occur more than if they were independent?

P(word,word,)

PMI(word,,word,) =log, 5 TS povord,)

Positive Pointwise Mutual Information

e PMlranges from —oo to + oo
e But the negative values are problematic
e Things are co-occurring less than we expect by chance

e Unreliable without enormous corpora
e |magine wl and w2 whose probability is each 10°
e Hard to be sure p(w1,w2) is significantly different than 1012

e Plus it’s not clear people are good at “unrelatedness”
e So we just replace negative PMI values by O

e Positive PMI (PPMI) between wordl and word2:
P(word,,word,))

1
°62p (word,)P(word,)’

PPMI(word,,word,) = max(

Computing PPMI on a term-context matrix

e Matrix F with W rows (words) and C columns (contexts)

o f.is# of timesw. occurs in context . wier o P
IJ 1 J pineapple ‘0 0 0 1 o 1
C W idrf(i)trarLation g i é g 411 g
f Yt >
.. =] _ i=1
Pj=w—c Pr =& Pi=wc
22 f’f EE fi EE fy
i=1 j=l1 i=1 j=1 i=l j=1
, p; _ pmi; if pmi; >0
pmi; = log, — ppmi; = / g
2 o s j 0 otherwise

/.

,D,-j= W C aprlcot
f pineapple

EE ij digital
i=1 j=1 information

p(w=information,c=data) = 6/19 =.32
p(w=information) = 11/19 =.58
p(c=data) =7/19 =.37

computer data

apricot 0.00 0.00
pineapple 0.00 0.00
digital 0.11 0.05
information 0.05 0.32

25
p(context) 0.16 0.37

p(w,context)

Count(w,context)

computer data pinch result
0 0 1 0
0 0 1 0
2 1 0 1
1 6 0 4
C w
E fij E fl/
w.) = J=1 c;) =11
p(w)
pinch result sugar
0.05 0.00 0.05 0.11
0.05 0.00 0.05 0.11
0.00 0.05 0.00 0.21
0.00 0.21 0.00 0.58
0.11 0.26 0.11

sugar
1

1
0
0

prniij = log, i

p-P,

computer
apricot 0.00
pineapple 0.00
digital 0.11
information 0.05
p(context) 0.16

p(w,context)

data
0.00
0.00
0.05
0.32

0.37

e pmi(information,data) = log, (.32 / (.37*.58)) =.58

26

PPMI(w,context)

computer data pinch

apricot - - 2.25
pineapple - - 2.25
digital 1.66 0.00 -
information 0.00 0.57 -

result

0.00
0.47

p(w)

pinch result sugar

0.05 0.00 0.05 0.11

0.05 0.00 0.05 0.11

0.00 0.05 0.00 0.21

0.00 0.21 0.00 0.58

0.11 0.26 0.11

(.57 using full precision)

sugar

2.25

2.25

Weighting PMI

e PMI is biased toward infrequent events

e Very rare words have very high PMI values

e Two solutions:
e Give rare words slightly higher probabilities

e Use add-delta smoothing (which has a similar effect)

27

Add-2 Smoothed Count(w,context
computer data pinch result sugar

apricot 2 2 3 2 3
pineapple 2 2 3 2 3
digital 4 3 2 3 2
information 3 8 2 6 2
p(w,context) [add-2] p(w)
computer data pinch result sugar
apricot 0.03 003 005 0.03 0.05 0.20
pineapple 0.03 003 005 0.03 0.05 0.20
digital 0.07 0.05 0.03 0.05 o0.03 0.24
information 0.05 0.14 0.03 0.10 o0.03 0.36

p(context) 0.19 0.5 017 022 0.17
28

PPMI versus add-2 smoothed PPMI

PPMI(w,context)
computer data pinch result sugar
apricot - - 2.25 - 2.25
pineapple - - 2.25 - 2.25
digital 1.66 0.00 - 0.00 -
information 0.00 0.57 - 0.47 -

PPMI(w,context) [add-2]
computer data pinch result sugar

apricot 0.00 0.00 0.56 0.00 0.56
pineapple 0.00 0.00 0.56 0.00 0.56
digital 0.62 000 0.00 0.00 0.00

information 0.00 0.58 0.00 0.37 0.00

Vector Semantics

Measuring similarity: the
cosine

Measuring similarity

e Given 2 target words vand w
e WEe'll need a way to measure their similarity.
e Most measure of vectors similarity are based on the:
Dot product or inner product frgm linear algebra
dot-product(v.w) =vV-w = Z Viw; = VW] +vawa + ..+ yywy
=1

e High when two vectors have large values in same dimensions.

e Low (in fact O0) for orthogonal vectors with zeros in complementary
31 distribution

Problem with dot product

N
ot-product(v.w) = v-w = ViW; = VIW| + Vawa + ...+ VNWy
dot-product(+
(=l
Dot product is longer if the vector is longer. Vector length:

-
7l = \| D_vi
\ 5

Vectors are longer if they have higher values in each dimension

That means more frequent words will have higher dot products

That’s bad: we don’t want a similarity metric to be sensitive to word
;, frequency

Solution: cosine

e Just divide the dot product by the length of the two vectors!
i b

| |b
e This turns out to be the cosine of the angle between them!

i b = |d|lblcos®
ib

| b|

— Ccos @

33

Cosine for computing similarity

Dot product Unit vectors
\ /l / N
. Vew v W ViV
cos(Vv, W

TS (5w

v;is the PPMI value for word v in context /
w; is the PPMI value for word w in context |.

— —> —> —>

Cos(v,w) is the cosine similarity of vand w

35

Cosine as a similarity metric

-1: vectors point in opposite directions .
+1: vectors point in same directions

0: vectors are orthogonal

Raw frequency or PPMI are non-
negative, so cosine range 0-1

_ arge mm

apricot
N

_z W Vi digital 0 1 2

V| \/211\/2\/2,_ 7 information 1 6 1

Which pair of words is more similar? 2+0+0
cosine(apricot,information) = 55650 113641 vZv38 .23

§l

- V
cos(V, W)

0+6+2]
cosine(digital,information) = Jo+1+4 V133641 ~sds 58

cosine(apricot,digital) = 0+0+0 =0
V14040 JO+1+4

36

37

Dimension 1: ‘large’

Visualizing vectors and angles

apricot 2
37 digital 0
y — information 1
A
apricot
digital I I | I I | I

1 2 3 4 5 6 7
Dimension 2: ‘data’

0
1
6

Clustering vectors to
visualize similarity in
co-occurrence matrices

38

WRIST
ANKLE
SHOULDER
ARM
LEG
HAND
FOOT
HEAD

NOSE
FINGER

TOE

FACE
EAR

EYE

TOOTH

DOG
CAT
PUPPY
KITTEN

cow
MOUSE

— TURTLE

L————— OYSTER
LION

BULL

CHICAGO

ATLANTA
MONTREAL
NASHVILLE

TOKYO

CHINA
RUSSIA
AFRICA
ASIA
EUROPE
AMERICA
BRAZIL

MOSCOW

FRANCE

HAWAII

Rohde et al. (2006)

Alternative to PPMI for measuring association

e tf-idf (that’s a hyphen not a minus sign)

e The combination of two factors
e Term frequency (Luhn 1957): frequency of the word (can be logged)
e Inverse document frequency (IDF) (Sparck Jones 1972)
* Nis the total number of documents

e df. = “document frequency of word /” . N
| 1df; = log| —
df.

e =#of documents with word /

© W= word i in document j

w,=tf, idf,

20

40

tf-idf not generally used for word-word similarity

But is by far the most common weighting when we are
considering the relationship of words to documents

Vector Semantics

Dense Vectors

Sparse versus dense vectors

* PPMI vectors are
e long (length |V|= 20,000 to 50,000)
e sparse (most elements are zero)
e Alternative: learn vectors which are

e short (length 200-1000)
e dense (most elements are non-zero)

42

Sparse versus dense vectors

e Why dense vectors?

e Short vectors may be easier to use as features in machine
learning (less weights to tune)

e Dense vectors may generalize better than storing explicit counts

e They may do better at capturing synonymy:

e car and automobile are synonyms; but are represented as
distinct dimensions; this fails to capture similarity between a

word with car as a neighbor and a word with automobile as a
neighbor

43

Two methods for getting short dense vectors

e Singular Value Decomposition (SVD)
e A special case of this is called LSA — Latent Semantic Analysis

e “Neural Language Model”-inspired predictive models
e skip-grams and CBOW

44

Vector Semantics

Dense Vectors via SVD

46

Intuition

Approximate an N-dimensional dataset using fewer dimensions
By first rotating the axes into a new space

In which the highest order dimension captures the most variance in the
original dataset

And the next dimension captures the next most variance, etc.

Many such (related) methods:
e PCA —principle components analysis

* Factor Analysis
* SVD

47

6

Dimensionality reduction

5

PCA dimension 2

PCA dimension 1

Singular Value Decomposition

Any rectangular w x ¢ matrix X equals the product of 3 matrices:
W: rows corresponding to original but m columns represents a dimension in a
new latent space, such that

* M column vectors are orthogonal to each other

* Columns are ordered by the amount of variance in the dataset each new dimension
accounts for

S: diagonal m x m matrix of singular values expressing the importance of each
dimension.

C: columns corresponding to original but m rows corresponding to singular
values

48

Singular Value Decomposition

Contexts
” ‘ j [_—
L S| | €
g x = w K ‘__
mxm mMmXCc¢

49 Landuaer and Dumais 1997

SVD applied to term-document matrix:

Latent Semantic Analysis

Each row of W:
¢ A k-dimensional vector

e Representing word W

50

Words

But instead of multiplying, we’ll just make use of W.

The result is a least-squares approximation to the original X

Contexts

Deerwester et al (1988)

X

If instead of keeping all m dimensions, we just keep the top k singular values. Let’s say 300.

\!
s| | C
b xh mxec
k k K

51

LSA more details

e 300 dimensions are commonly used

e The cells are commonly weighted by a product of two weights
e Local weight: Log term frequency
e Global weight: either idf or an entropy measure

Let’s return to PPMI word-word matrices

e Can we apply to SVD to them?

52

53

SVD applied to term-term matrix

Vx|V

- 4

W

Vx|V

-

-

g 0O 0 ... 0
0 oo 0 ... 0
0 0 oy ... 0
0 0 0 ... oy
VIxIV]

Vx|V

(I'm simplifying here by assuming the matrix has rank |V])

-

54

Truncated SVD on term-term matrix

V| x|V

W

V| x k

k x|V

Truncated SVD produces embeddings

e Each row of W matrix is a k-dimensional embedding T]
representation of each word w fo; O
word i
e K might range from 50 to 1000 1%

e Generally we keep the top k dimensions,
but some experiments suggest that getting
rid of the top 1 dimension or even the top -|V| <k
50 dimensions is helpful (Lapesa and Evert
2014).

55

Embeddings versus sparse vectors

e Dense SVD embeddings sometimes work better than
sparse PPMI matrices at tasks like word similarity

* Denoising: low-order dimensions may represent unimportant
information

* Truncation may help the models generalize better to unseen data.

* Having a smaller number of dimensions may make it easier for
classifiers to properly weight the dimensions for the task.

* Dense models may do better at capturing higher order co-occurrence.

56

Vector Semantics

Embeddings inspired by neural
language models: skip-grams and
CBOW

Prediction-based models:
An alternative way to get dense vectors

* Skip-gram (Mikolov et al. 2013a) CBOW (Mikolov et al. 2013b)
* Learn embeddings as part of the process of word prediction.

* Train a neural network to predict neighboring words
* Inspired by neural net language models.
* Insodoing, learn dense embeddings for the words in the training corpus.
e Advantages:
e Fast, easy to train (much faster than SVD)

e Available online in the word2vec package
* |ncluding sets of pretrained embeddings!

58

Skip-grams

e Predict each neighboring word
e in a context window of 2C words
e from the current word.

* So for C=2, we are given word Wy and predicting these 4

words: [Wrt.2, We1, Wre1, W]

59

Skip-grams learn 2 embeddings for each w 2

input embedding v, in the input matrix W

e Column i of the input matrix W is the 1xd

embedding V; for word i in the vocabulary.

output embedding v/, in output matrix W’

e Row i of the output matrix W'is a d x 1 vector
embedding v’l- for word i in the vocabulary.

60

1

d

N —

VI

V| x d

61

Setup

Walking through corpus pointing at word w(t), whose index in the
vocabulary is j, so we’ll call it w, (1<j<|V]).

Let’s predict w(t+1) , whose index in the vocabularyis k(1 <k< |V |).
Hence our task is to compute P(wkl Wj).

62

One-hot vectors

A vector of length |V|

1 for the target word and O for other words
So if “popsicle” is vocabulary word 5

The one-hot vector is
[0,0,0,0,1,0,0,0,0.......0]

Skip-gram Output layer
probabilities of
context words

(1)
=

Projection layer

Input layer .
embedding for w,

1-hot input vector

o
X1 ? .
X2 . '3 ° .
c e @ Q :
: . 0
. 0
Wi ox o] W o &y
. [Vixd : @] v,
Y : ®y,
@ = ’ o
Xvie —— W dx|V] W
® y, t+1
1X|V] 1xd 8
9 :
63 o
=Y

Skip-gram

h=vj

Input layer
1-hot input vector

X ?
X, |@
W

Vixd

(@@ ++ @ *+» ©0)

Projection layer
embedding for w,

Output layer
probabilities of

Wi

1X|V] 1xd

64

e 00 (@00 -- O

(©®® - @

context words

Y1
20=W’h
Yo o Wi-1

Yivi

Y1 ,
20=W’h
v i+l

Output layer
- probabilities of
h = Vj context words
@) v,
Projection layer oy ’
Input layer 20 =
hp y embedding for w, ol : o=W'h
1-hot input vector)
e— o el Q) = v’kh
X, |@® 0) ‘| -
Ak : o’ O = V'y V]
Wi ox lof W o 0%
e : ®y,
xvle_———— Woaavy |5 1
y t+
IX|V] Ixd 1
- :
65 oy,

Turning outputs into probabilities

o Ok=V k'VJ

* We use softmax to turn into probabilities

exp(vy -vj)

l)c:‘u'l W) = ‘ .

66

Embeddings from W and W’

e Since we have two embeddings, Vi and v’j for each word w;

e \We can either:

e Just use v,

e Sum them
e Concatenate them to make a double-length embedding

67

68

But wait; how do we learn the embeddings?

argmax log p(Text)

)
T
urgn]ux I()gH,){“.lf (,'.“.:r Il.“'lll t]‘l.“_lf .("]
(2
=1

argmax E log p(w' /1| w!")

o c< j<e j#0

IS ‘,[r‘l \
’ J

= drgmaxz Z log Yfm“

syl .ol
=1 —¢ <)<, j#0 Lawe \'|"‘I’|.\u ! l

T

e)] 1.

== dl"n‘ld\ E V) "”4 - l()g E "'\.I)(.]'\“ . V“')
we vV

=1 —e<j<e j#0

69

Relation between skipgrams and PMI!

If we multiply WW’T

We get a |V|x|V]| matrix M, each entry mij corresponding to some

association between input word i and output word j

Levy and Goldberg (2014b) show that skip-gram reaches its optimum just
when this matrix is a shifted version of PMI:

WW'T=MPMI —|og k

So skip-gram is implicitly factoring a shifted version of the PMI matrix into
the two embedding matrices.

CBOW (Continuous Bag of Words)

Input layer

1-hot input vectors
for each context word

2 H Projection layer Output layer
: . sum of embeddings probability of w,
“le for context words
Wt-l Xj @
a5 A
o e
Xy @) ;
X| (o) . Wy
"o S
el e Ixd
. X
®
Xy, @)

70
1X|V|

Properties of embeddings

e Nearest words to some embeddings (Mikolov et al. 2013)

target: Redmond Havel ninjutsu graffit capitulate
Redmond Wash. Vaclav Havel ninja spray paint capitulation
Redmond Washington president Vaclav Havel martial arts grafitti capitulated
Microsoft Velvet Revolution swordsmanship taggers capitulating

71

Embeddings capture relational meaning!

*vector(‘’king’) - vector(‘man’) + vector(‘woman’) = vector(‘queen’)

vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) = vector(‘Rome’)

WOMAN

—_— /
UNCLE
QUEEN

KING

72

AUNT

N\

KING

QUEENS

N\

QUEEN

Vector Semantics

Evaluating similarity

Evaluating similarity

e Extrinsic (task-based, end-to-end) Evaluation:
* Question Answering
e Essay grading
e Classification
e Intrinsic Evaluation:
e Correlation between algorithm and human word similarity ratings
e Wordsim353: 353 noun pairs rated 0-10. sim(plane,car)=5.77
e Taking TOEFL multiple-choice vocabulary tests

e Levied 1s closest in meaning to:

imposed, believed, requested, correlated

Summary

e Distributional (vector) models of meaning
e Sparse (PPMI-weighted word-word co-occurrence matrices)
e Dense:
* Word-word SVD 50-2000 dimensions
e Skip-grams and CBOW (embeddings available in word2vec)

75

76

A great semantic vector space for documents

words have low-dimensional embeddings, useful for many
computational linguistic applications

documents are a weighted combination of words

documents as a vector in the low-dimensional space

this allows
e semantic document clustering (k-means, hierarchical, etc.)
e search for similar documents (prior art in patents, etc.)

