
Vector Semantics
Introduction

Klinton Bicknell

(borrowing from: Dan Jurafsky and Jim Martin)

Why	vector	models	of	meaning?  
computing	the	similarity	between	words

words	are	related	to	each	other!	

“fast”	is	similar	to	“rapid”	
“tall”	is	similar	to	“height”	

Question	answering:	
Q:	“How	tall	is	Mt.	Everest?”  
Candidate	A:	“The	official	height	of	Mount	Everest	is	29029	feet”
2

Word	similarity	for	plagiarism	detection

Word	similarity	for	historical	change: 
semantic	change	over	time

4

Kulkarni,	Al-Rfou,	Perozzi,	Skiena	2015Sagi,	Kaufmann	Clark	2013

Se
m
an

;c
	B
ro
ad

en
in
g

0

10

20

30

40

dog deer hound

<1250
Middle	1350-1500
Modern	1500-1710

Problems	with	thesaurus-based	meaning

• We	don’t	have	a	thesaurus	for	every	language	
• We	can’t	have	a	thesaurus	for	every	year	

• For	change	detection,	we	need	to	compare	word	meanings	in	
year	t	to	year	t+1	

• Thesauruses	have	problems	with	recall	
• Many	words	and	phrases	are	missing	
• Thesauri	work	less	well	for	verbs,	adjectives

Distributional	models	of	meaning  
=	vector-space	models	of	meaning	  
=	vector	semantics

Intuitions:		Zellig	Harris	(1954):	
• “oculist	and	eye-doctor	…	occur	in	almost	the	same	
environments”	

• “If	A	and	B	have	almost	identical	environments	we	say	that	
they	are	synonyms.”	

Firth	(1957):		
• “You	shall	know	a	word	by	the	company	it	keeps!”

6

Intuition	of	distributional	word	similarity

• Nida	example:	Suppose	I	asked	you	what	is	tesgüino?
A bottle of tesgüino is on the table
Everybody likes tesgüino
Tesgüino makes you drunk
We make tesgüino out of corn.

• From context words humans can guess tesgüino means
• an	alcoholic	beverage	like	beer	

• Intuition	for	algorithm:		
• Two	words	are	similar	if	they	have	similar	word	contexts.

Three	kinds	of	vector	models

Sparse	vector	representations	
1. Mutual-information	weighted	word	co-occurrence	matrices	

Dense	vector	representations:	
2. Singular	value	decomposition	(and	Latent	Semantic	Analysis)	
3. Neural-network-inspired	models	(skip-grams,	CBOW)

8

Shared	intuition

• Model	the	meaning	of	a	word	by	“embedding”	in	a	vector	space.	
• The	meaning	of	a	word	is	a	vector	of	numbers	

• Vector	models	are	also	called	“embeddings”.	

• Contrast:	word	meaning	is	represented	in	many	computational	
linguistic	applications	by	a	vocabulary	index	(“word	number	545”)	

• Old	philosophy	joke:		
Q:	What’s	the	meaning	of	life?	
A:	LIFE

9

Vector Semantics
Words	and	co-occurrence	

vectors

Co-occurrence	Matrices

• We	represent	how	often	a	word	occurs	in	a	document	
• Term-document	matrix	

• Or	how	often	a	word	occurs	with	another	
• Term-term	matrix		

(or	word-word	co-occurrence	matrix	
or	word-context	matrix)

11

As	You	Like	It Twelfth	Night Julius	Caesar Henry	V
battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0

Term-document	matrix

• Each	cell:	count	of	word	w	in	a	document	d:	
• Each	document	is	a	count	vector	in	ℕv:	a	column	below	

12

Similarity	in	term-document	matrices

Two	documents	are	similar	if	their	vectors	are	similar

13

As	You	Like	It Twelfth	Night Julius	Caesar Henry	V
battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0

The	words	in	a	term-document	matrix

• Each	word	is	a	count	vector	in	ℕD:	a	row	below	

14

As	You	Like	It Twelfth	Night Julius	Caesar Henry	V
battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0

The	words	in	a	term-document	matrix

• Two	words	are	similar	if	their	vectors	are	similar

15

As	You	Like	It Twelfth	Night Julius	Caesar Henry	V
battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0

The	word-word	or	word-context	matrix

16

	

17

aardvark computer data pinch result sugar …
apricot 0 0 0 1 0 1
pineapple 0 0 0 1 0 1
digital 0 2 1 0 1 0
information 0 1 6 0 4 0
… …

Word-word	matrix

• 	

18

2	kinds	of	co-occurrence	between	2	words

• First-order	co-occurrence	(syntagmatic	association):	
• They	are	typically	nearby	each	other.		
• wrote	is	a	first-order	associate	of	book	or	poem.		

• Second-order	co-occurrence	(paradigmatic	association):		
• They	have	similar	neighbors.		
• wrote	is	a	second-	order	associate	of	words	like	said	or	
remarked.	

19

(Schütze and Pedersen, 1993)

Vector Semantics
Positive	Pointwise	Mutual	

Information	(PPMI)

Problem	with	raw	counts

• Raw	word	frequency	is	not	a	great	measure	of	
association	between	words	
• It’s	very	skewed	

• “the”	and	“of”	are	very	frequent,	but	maybe	not	the	most	
discriminative	

• We’d	rather	have	a	measure	that	asks	whether	a	context	word	is	
particularly	informative	about	the	target	word.	
• Positive	Pointwise	Mutual	Information	(PPMI)

21

Pointwise	Mutual	Information

• 	

PMI(X,Y) = log2
P(x,y)
P(x)P(y)

Positive	Pointwise	Mutual	Information

• 	

Computing	PPMI	on	a	term-context	matrix

• Matrix	F	with	W	rows	(words)	and	C	columns	(contexts)	

• fij	is	#	of	times	wi	occurs	in	context	cj

24

pij =
fij

fij
j=1

C

∑
i=1

W

∑
pi* =

fij
j=1

C

∑

fij
j=1

C

∑
i=1

W

∑
p* j =

fij
i=1

W

∑

fij
j=1

C

∑
i=1

W

∑

pmiij = log2
pij
pi*p* j

ppmiij =
pmiij if pmiij > 0

0 otherwise

⎧
⎨
⎪

⎩⎪

p(w=information,c=data)	=		
p(w=information)	=	
p(c=data)	=

25

p(w,context) p(w)
computer data pinch result sugar

apricot 0.00 0.00 0.05 0.00 0.05 0.11
pineapple 0.00 0.00 0.05 0.00 0.05 0.11
digital 0.11 0.05 0.00 0.05 0.00 0.21
information 0.05 0.32 0.00 0.21 0.00 0.58

p(context) 0.16 0.37 0.11 0.26 0.11

=	.326/19

11/19 =	.58

7/19 =	.37

pij =
fij

fij
j=1

C

∑
i=1

W

∑

p(wi) =
fij

j=1

C

∑

N
p(cj) =

fij
i=1

W

∑

N

26

pmiij = log2
pij
pi*p* j

• pmi(information,data)	=	log2	(

p(w,context) p(w)
computer data pinch result sugar

apricot 0.00 0.00 0.05 0.00 0.05 0.11
pineapple 0.00 0.00 0.05 0.00 0.05 0.11
digital 0.11 0.05 0.00 0.05 0.00 0.21
information 0.05 0.32 0.00 0.21 0.00 0.58

p(context) 0.16 0.37 0.11 0.26 0.11

PPMI(w,context)
computer data pinch result sugar

apricot - - 2.25 - 2.25
pineapple - - 2.25 - 2.25
digital 1.66 0.00 - 0.00 -
information 0.00 0.57 - 0.47 -

.32	/ (.37*.58)) 	=	.58
(.57	using	full	precision)

Weighting	PMI

• PMI	is	biased	toward	infrequent	events	
• Very	rare	words	have	very	high	PMI	values	

• Two	solutions:	
• Give	rare	words	slightly	higher	probabilities	
• Use	add-delta	smoothing	(which	has	a	similar	effect)

27

28

Add-2!Smoothed!Count(w,context)
computer data pinch result sugar

apricot 2 2 3 2 3
pineapple 2 2 3 2 3
digital 4 3 2 3 2
information 3 8 2 6 2

p(w,context)![add-2] p(w)
computer data pinch result sugar

apricot 0.03 0.03 0.05 0.03 0.05 0.20
pineapple 0.03 0.03 0.05 0.03 0.05 0.20
digital 0.07 0.05 0.03 0.05 0.03 0.24
information 0.05 0.14 0.03 0.10 0.03 0.36

p(context) 0.19 0.25 0.17 0.22 0.17

PPMI	versus	add-2	smoothed	PPMI

29

PPMI(w,context)![add-2]
computer data pinch result sugar

apricot 0.00 0.00 0.56 0.00 0.56
pineapple 0.00 0.00 0.56 0.00 0.56
digital 0.62 0.00 0.00 0.00 0.00
information 0.00 0.58 0.00 0.37 0.00

PPMI(w,context)
computer data pinch result sugar

apricot - - 2.25 - 2.25
pineapple - - 2.25 - 2.25
digital 1.66 0.00 - 0.00 -
information 0.00 0.57 - 0.47 -

Vector Semantics
Measuring	similarity:	the	

cosine

Measuring	similarity

• Given	2	target	words	v	and	w	
• We’ll	need	a	way	to	measure	their	similarity.	
• Most	measure	of	vectors	similarity	are	based	on	the:	
• Dot	product	or	inner	product	from	linear	algebra	

• High	when	two	vectors	have	large	values	in	same	dimensions.		
• Low	(in	fact	0)	for	orthogonal	vectors	with	zeros	in	complementary	
distribution31

Problem	with	dot	product

• Dot	product	is	longer	if	the	vector	is	longer.	Vector	length:	

• Vectors	are	longer	if	they	have	higher	values	in	each	dimension	
• That	means	more	frequent	words	will	have	higher	dot	products	
• That’s	bad:	we	don’t	want	a	similarity	metric	to	be	sensitive	to	word	

frequency32

Solution:	cosine

• Just	divide	the	dot	product	by	the	length	of	the	two	vectors!	

• This	turns	out	to	be	the	cosine	of	the	angle	between	them!

33

Cosine	for	computing	similarity

cos(
!v, !w) =

!v• !w
!v !w

=
!v
!v
•
!w
!w
=

viwii=1

N
∑
vi
2

i=1

N
∑ wi

2
i=1

N
∑

Dot product Unit vectors

vi is the PPMI value for word v in context i
wi is the PPMI value for word w in context i.

Cos(v,w) is the cosine similarity of v and w

Sec. 6.3

Cosine	as	a	similarity	metric

• -1:	vectors	point	in	opposite	directions		
• +1:		vectors	point	in	same	directions	
• 0:	vectors	are	orthogonal	

• Raw	frequency	or	PPMI	are	non-
negative,	so		cosine	range	0-1

35

large data computer

apricot 2 0 0

digital 0 1 2

information 1 6 1

36

Which	pair	of	words	is	more	similar?
cosine(apricot,information)	=	

cosine(digital,information)	=

cosine(apricot,digital)	=	

cos(
!v, !w) =

!v• !w
!v !w

=
!v
!v
•
!w
!w
=

viwii=1

N
∑
vi
2

i=1

N
∑ wi

2
i=1

N
∑

1+ 0+ 0

1+36+1

1+36+1

0+1+ 4

0+1+ 4
 0+ 6+ 2

 0+ 0+ 0

=
8
38 5

= .58

= 0

Visualizing	vectors	and	angles

1 2 3 4 5 6 7

1

2

3

digital

apricot
information

D
im

en
sio

n
1:

 ‘l
ar

ge
’

Dimension 2: ‘data’37

large data

apricot 2 0

digital 0 1

information 1 6

Clustering	vectors	to	
visualize	similarity	in	
co-occurrence	matrices

Rohde, Gonnerman, Plaut Modeling Word Meaning Using Lexical Co-Occurrence

HEAD

HANDFACE

DOG

AMERICA

CAT

EYE

EUROPE

FOOT

CHINA
FRANCE

CHICAGO

ARM

FINGER

NOSE

LEG

RUSSIA

MOUSE

AFRICA

ATLANTA

EAR

SHOULDER

ASIA

COW

BULL

PUPPY LION

HAWAII

MONTREAL

TOKYO

TOE

MOSCOW

TOOTH

NASHVILLE

BRAZIL

WRIST

KITTEN

ANKLE

TURTLE

OYSTER

Figure 8: Multidimensional scaling for three noun classes.

WRIST
ANKLE

SHOULDER
ARM
LEG
HAND

FOOT
HEAD
NOSE
FINGER

TOE
FACE
EAR
EYE

TOOTH
DOG
CAT

PUPPY
KITTEN

COW
MOUSE

TURTLE
OYSTER

LION
BULL
CHICAGO
ATLANTA

MONTREAL
NASHVILLE

TOKYO
CHINA
RUSSIA
AFRICA
ASIA
EUROPE
AMERICA

BRAZIL
MOSCOW

FRANCE
HAWAII

Figure 9: Hierarchical clustering for three noun classes using distances based on vector correlations.

20

38 Rohde	et	al.	(2006)

Alternative	to	PPMI	for	measuring	association

• tf-idf		(that’s	a	hyphen	not	a	minus	sign)	
• The	combination	of	two	factors	

• Term	frequency	(Luhn	1957):	frequency	of	the	word	(can	be	logged)	
• Inverse	document	frequency	(IDF)	(Sparck	Jones	1972)	

• N	is	the	total	number	of	documents	

• dfi	=	“document	frequency	of	word	i”	

• 				=	#	of	documents	with	word	I	

• wij	=	word	i	in	document	j

 wij=tfij idfi
39

idfi = log
N
dfi

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

tf-idf	not	generally	used	for	word-word	similarity

• But	is	by	far	the	most	common	weighting	when	we	are	
considering	the	relationship	of	words	to	documents

40

Vector Semantics
Dense	Vectors	

Sparse	versus	dense	vectors

• PPMI	vectors	are	
• long	(length	|V|=	20,000	to	50,000)	
• sparse	(most	elements	are	zero)	

• Alternative:	learn	vectors	which	are	
• short	(length	200-1000)	
• dense	(most	elements	are	non-zero)

42

Sparse	versus	dense	vectors

• Why	dense	vectors?	
• Short	vectors	may	be	easier	to	use	as	features	in	machine	
learning	(less	weights	to	tune)	

• Dense	vectors	may	generalize	better	than	storing	explicit	counts	
• They	may	do	better	at	capturing	synonymy:	

• car	and	automobile	are	synonyms;	but	are	represented	as	
distinct	dimensions;	this	fails	to	capture	similarity	between	a	
word	with	car	as	a	neighbor	and	a	word	with	automobile	as	a	
neighbor

43

Two	methods	for	getting	short	dense	vectors

• Singular	Value	Decomposition	(SVD)	
• A	special	case	of	this	is	called	LSA	–	Latent	Semantic	Analysis	

• “Neural	Language	Model”-inspired	predictive	models	
• skip-grams	and	CBOW

44

Vector Semantics
Dense	Vectors	via	SVD

Intuition
• Approximate	an	N-dimensional	dataset	using	fewer	dimensions	
• By	first	rotating	the	axes	into	a	new	space	
• In	which	the	highest	order	dimension	captures	the	most	variance	in	the	

original	dataset	
• And	the	next	dimension	captures	the	next	most	variance,	etc.	
• Many	such	(related)	methods:	

• PCA	–	principle	components	analysis	
• Factor	Analysis	
• SVD

46

47

Dimensionality	reduction

Singular	Value	Decomposition

48

Any	rectangular	w	x	c	matrix	X	equals	the	product	of	3	matrices:	
W:	rows	corresponding	to	original	but	m	columns	represents	a	dimension	in	a	
new	latent	space,	such	that		

• M	column	vectors	are	orthogonal	to	each	other	
• Columns	are	ordered	by	the	amount	of	variance	in	the	dataset	each	new	dimension	
accounts	for	

S:		diagonal	m	x	m	matrix	of	singular	values	expressing	the	importance	of	each	
dimension.	
C:	columns	corresponding	to	original	but	m	rows	corresponding	to	singular	
values

Singular	Value	Decomposition

49 Landuaer	and	Dumais	1997

SVD	applied	to	term-document	matrix:  
Latent	Semantic	Analysis

• If	instead	of	keeping	all	m	dimensions,	we	just	keep	the	top	k	singular	values.	Let’s	say	300.	
• The	result	is	a	least-squares	approximation	to	the	original	X	
• But	instead	of	multiplying,	we’ll	just	make	use	of	W.	
• Each	row	of	W:	

• A	k-dimensional	vector	
• Representing	word	W

50 k
/

/
k

/
k

/
k

Deerwester	et	al	(1988)

LSA	more	details

• 300	dimensions	are	commonly	used	
• The	cells	are	commonly	weighted	by	a	product	of	two	weights	

• Local	weight:		Log	term	frequency	
• Global	weight:	either	idf	or	an	entropy	measure

51

Let’s	return	to	PPMI	word-word	matrices

• Can	we	apply	to	SVD	to	them?

52

SVD	applied	to	term-term	matrix

53 (I’m	simplifying	here	by	assuming	the	matrix	has	rank	|V|)

Truncated	SVD	on	term-term	matrix

54

Truncated	SVD	produces	embeddings

55

• Each	row	of	W	matrix	is	a	k-dimensional	
representation	of	each	word	w	

• K	might	range	from	50	to	1000	
• Generally	we	keep	the	top	k	dimensions,	

but	some	experiments	suggest	that	getting	
rid	of	the	top	1	dimension	or		even	the	top	
50	dimensions	is	helpful	(Lapesa	and	Evert	
2014).

Embeddings	versus	sparse	vectors

• Dense	SVD	embeddings	sometimes	work	better	than	
sparse	PPMI	matrices	at	tasks	like	word	similarity	
• Denoising:	low-order	dimensions	may	represent	unimportant	
information	

• Truncation	may	help	the	models	generalize	better	to	unseen	data.	
• Having	a	smaller	number	of	dimensions	may	make	it	easier	for	
classifiers	to	properly	weight	the	dimensions	for	the	task.	

• Dense	models	may	do	better	at	capturing	higher	order	co-occurrence.	
56

Vector Semantics
Embeddings	inspired	by	neural	

language	models:	skip-grams	and	
CBOW

Prediction-based	models:  
An	alternative	way	to	get	dense	vectors

• Skip-gram	(Mikolov	et	al.	2013a)		CBOW	(Mikolov	et	al.	2013b)	
• Learn	embeddings	as	part	of	the	process	of	word	prediction.	
• Train	a	neural	network	to	predict	neighboring	words	

• Inspired	by	neural	net	language	models.	
• In	so	doing,	learn	dense	embeddings	for	the	words	in	the	training	corpus.	

• Advantages:	
• Fast,	easy	to	train	(much	faster	than	SVD)	
• Available	online	in	the	word2vec	package	
• Including	sets	of	pretrained	embeddings!

58

Skip-grams

• Predict	each	neighboring	word		
• in	a	context	window	of	2C	words		
• from	the	current	word.		

• So	for	C=2,	we	are	given	word	wt	and	predicting	these	4	

words:	[wt-2,	wt-1,	wt+1,	wt+2]

59

input	embedding	v,	in	the	input	matrix	W	

• Column	i	of	the	input	matrix	W	is	the	1×d	

embedding	vi	for	word	i	in	the	vocabulary.		

output	embedding	vʹ,	in	output	matrix	W’	

• Row	i	of	the	output	matrix	Wʹ	is	a	d	×	1	vector	

embedding	vʹi	for	word	i	in	the	vocabulary.

60

Skip-grams	learn	2	embeddings	for	each	w

Setup

• Walking	through	corpus	pointing	at	word	w(t),	whose	index	in	the	
vocabulary	is	j,	so	we’ll	call	it	w

j
	(1	<	j	<	|V	|).		

• Let’s	predict	w(t+1)	,	whose	index	in	the	vocabulary	is	k	(1	<	k	<	|V	|).	
Hence	our	task	is	to	compute	P(wk|wj).	

61

One-hot	vectors

• A	vector	of	length	|V|		
• 1	for	the	target	word	and	0	for	other	words	
• So	if	“popsicle”	is	vocabulary	word	5	
• The	one-hot	vector	is	
• [0,0,0,0,1,0,0,0,0…….0]

62

63

Skip-gram

64

Skip-gram
h	=	vj

o	=	W’h

o	=	W’h

65

Skip-gram

h	=	vj
o	=	W’h

ok	=	v’kh
ok	=	v’k·vj

Turning	outputs	into	probabilities

• ok	=	v’k·vj	
• We	use	softmax	to	turn	into	probabilities

66

Embeddings	from	W	and	W’

• Since	we	have	two	embeddings,	vj	and	v’j	for	each	word	wj	

• We	can	either:	
• Just	use	vj	
• Sum	them	
• Concatenate	them	to	make	a	double-length	embedding

67

But	wait;	how	do	we	learn	the	embeddings?

68

Relation	between	skipgrams	and	PMI!

• If	we	multiply	WW’T		

• We	get	a	|V|x|V|	matrix	M	,	each	entry	mij	corresponding	to	some	

association	between	input	word	i	and	output	word	j		
• Levy	and	Goldberg	(2014b)	show	that	skip-gram	reaches	its	optimum	just	

when	this	matrix	is	a	shifted	version	of	PMI:	

	 	 	 WWʹT	=MPMI	−log	k		
• So	skip-gram	is	implicitly	factoring	a	shifted	version	of	the	PMI	matrix	into	

the	two	embedding	matrices.
69

CBOW	(Continuous	Bag	of	Words)

70

Properties	of	embeddings

71

• Nearest	words	to	some	embeddings	(Mikolov	et	al.	2013)

Embeddings	capture	relational	meaning!

• 	

72

Vector Semantics
Evaluating	similarity

Evaluating	similarity

• Extrinsic	(task-based,	end-to-end)	Evaluation:	
• Question	Answering	
• Essay	grading	
• Classification	

• Intrinsic	Evaluation:	
• Correlation	between	algorithm	and	human	word	similarity	ratings	

• Wordsim353:	353	noun	pairs	rated	0-10.			sim(plane,car)=5.77	
• Taking	TOEFL	multiple-choice	vocabulary	tests	

• Levied is closest in meaning to:
 imposed, believed, requested, correlated

Summary

• Distributional	(vector)	models	of	meaning	
• Sparse	(PPMI-weighted	word-word	co-occurrence	matrices)	
• Dense:	

• Word-word	SVD	50-2000	dimensions	
• Skip-grams	and	CBOW	(embeddings	available	in	word2vec)

75

A	great	semantic	vector	space	for	documents

• words	have	low-dimensional	embeddings,	useful	for	many	
computational	linguistic	applications	

• documents	are	a	weighted	combination	of	words	
• documents	as	a	vector	in	the	low-dimensional	space	
• this	allows	

• semantic	document	clustering	(k-means,	hierarchical,	etc.)	
• search	for	similar	documents	(prior	art	in	patents,	etc.)

76

