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Ranked	retrieval
▪ Thus	far,	our	queries	have	all	been	Boolean.	
▪ Documents	either	match	or	don’t.	

▪ Good	for	expert	users	with	precise	understanding	of	
their	needs	and	the	collection.	

▪ Not	good	for	the	majority	of	users.	
▪ Most	users	incapable	of	writing	Boolean	queries	(or	they	
are,	but	they	think	it’s	too	much	work).	

▪ Most	users	don’t	want	to	wade	through	1000s	of	results.
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Problem	with	Boolean	search: 
feast	or	famine

▪ Boolean	queries	often	result	in	either	too	few	(=0)	or	
too	many	(1000s)	results.	

▪ Query	1:	“standard	user	dlink	650”	→	200,000	hits	
▪ Query	2:	“standard	user	dlink	650	no	card	found”:	0	
hits	

▪ It	takes	a	lot	of	skill	to	come	up	with	a	query	that	
produces	a	manageable	number	of	hits.	
▪ AND	gives	too	few;	OR	gives	too	many
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Ranked	retrieval	models
▪ Rather	than	a	set	of	documents	satisfying	a	query	
expression,	in	ranked	retrieval,	the	system	returns	an	
ordering	over	the	(top)	documents	in	the	collection	
for	a	query	

▪ Free	text	queries:	Rather	than	a	query	language	of	
operators	and	expressions,	the	user’s	query	is	just	
one	or	more	words	in	a	human	language	

▪ In	principle,	there	are	two	separate	choices	here,	but	
in	practice,	ranked	retrieval	has	normally	been	
associated	with	free	text	queries	and	vice	versa
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Feast	or	famine:	not	a	problem	in	ranked	
retrieval

▪ When	a	system	produces	a	ranked	result	set,	large	
result	sets	are	not	an	issue	
▪ Indeed,	the	size	of	the	result	set	is	not	an	issue	
▪ We	just	show	the	top	k	(	≈	10)	results	
▪ We	don’t	overwhelm	the	user	

▪ Premise:	the	ranking	algorithm	works
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Scoring	as	the	basis	of	ranked	retrieval
▪ We	wish	to	return	in	order	the	documents	most	likely	
to	be	useful	to	the	searcher	

▪ How	can	we	rank-order	the	documents	in	the	
collection	with	respect	to	a	query?	

▪ Assign	a	score	–	say	in	[0,	1]	–	to	each	document	
▪ This	score	measures	how	well	document	and	query	
“match”.
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Query-document	matching	scores
▪ We	need	a	way	of	assigning	a	score	to	a	query/
document	pair	

▪ Let’s	start	with	a	one-term	query	
▪ If	the	query	term	does	not	occur	in	the	document:	
score	should	be	0	

▪ The	more	frequent	the	query	term	in	the	document,	
the	higher	the	score	(should	be)	

▪ We	will	look	at	a	number	of	alternatives	for	this.
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Take	1:	Jaccard	coefficient
▪ A	commonly	used	measure	of	overlap	of	two	sets	A	
and	B	

▪ jaccard(A,B)	=	|A	∩	B|	/	|A	∪	B|	
▪ jaccard(A,A)	=	1	
▪ jaccard(A,B)	=	0	if	A	∩	B	=	0	
▪ A	and	B	don’t	have	to	be	the	same	size.	
▪ Always	assigns	a	number	between	0	and	1.
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Jaccard	coefficient:	Scoring	example
▪ What	is	the	query-document	match	score	that	the	
Jaccard	coefficient	computes	for	each	of	the	two	
documents	below?	

▪ Query:	ides	of	march	
▪ Document	1:	caesar	died	in	march	
▪ Document	2:	the	long	march
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Issues	with	Jaccard	for	scoring
▪ It	doesn’t	consider	term	frequency	(how	many	times	a	
term	occurs	in	a	document)	

▪ Rare	terms	in	a	collection	are	more	informative	than	
frequent	terms.	Jaccard	doesn’t	consider	this	
information	

▪ We	need	a	more	sophisticated	way	of	normalizing	for	
length	

▪ Later	in	this	lecture,	we’ll	use		
▪ .	.	.	instead	of	|A	∩	B|/|A	∪	B|	(Jaccard)	for	length	
normalization.

| B A|/| B A| ∪∩
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Recall:	Binary	term-document	incidence	
matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Each	document	is	represented	by	a	binary	vector	∈	{0,1}|V|
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Term-document	count	matrices
▪ Consider	the	number	of	occurrences	of	a	term	in	a	
document:		
▪ Each	document	is	a	count	vector	in	ℕv:	a	column	below	

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

Brutus 4 157 0 1 0 0

Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0
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Bag	of	words	model
▪ Vector	representation	doesn’t	consider	the	ordering	
of	words	in	a	document	

▪ John	is	quicker	than	Mary	and	Mary	is	quicker	than	
John	have	the	same	vectors	

▪ This	is	called	the	bag	of	words	model.	
▪ In	a	sense,	this	is	a	step	back:	The	positional	index	
was	able	to	distinguish	these	two	documents.	

▪ For	now:	bag	of	words	model



Term	frequency	tf
▪ The	term	frequency	tft,d	of	term	t	in	document	d	is	
defined	as	the	number	of	times	that	t	occurs	in	d.	

▪ We	want	to	use	tf	when	computing	query-document	
match	scores.	But	how?	

▪ Raw	term	frequency	is	not	what	we	want:	
▪ A	document	with	10	occurrences	of	the	term	is	more	
relevant	than	a	document	with	1	occurrence	of	the	term.	

▪ But	not	10	times	more	relevant.	

▪ Relevance	does	not	increase	proportionally	with	term	
frequency.

NB:	frequency	=	count	in	IR



Log-frequency	weighting
▪ The	log	frequency	weight	of	term	t	in	d	is	

▪ 0	→	0,	1	→	1,	2	→	1.3,	10	→	2,	1000	→	4,	etc.	
▪ Score	for	a	document-query	pair:	sum	over	terms	t	in	
both	q	and	d:	

▪ score	

▪ The	score	is	0	if	none	of	the	query	terms	is	present	in	
the	document.
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Document	frequency

▪ Rare	terms	are	more	informative	than	frequent	terms	
▪ Recall	stop	words	

▪ Consider	a	term	in	the	query	that	is	rare	in	the	
collection	(e.g.,	arachnocentric)	

▪ A	document	containing	this	term	is	very	likely	to	be	
relevant	to	the	query	arachnocentric	

▪ →	We	want	a	high	weight	for	rare	terms	like	
arachnocentric.
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Document	frequency,	continued
▪ Frequent	terms	are	less	informative	than	rare	terms	
▪ Consider	a	query	term	that	is	frequent	in	the	
collection	(e.g.,	high,	increase,	line)	

▪ A	document	containing	such	a	term	is	more	likely	to	
be	relevant	than	a	document	that	doesn’t	

▪ But	it’s	not	a	sure	indicator	of	relevance.	
▪ →	For	frequent	terms,	we	want	low	positive	weights	
for	words	like	high,	increase,	and	line	

▪ But	higher	weights	for	rare	terms.	
▪ We	will	use	document	frequency	(df)	to	capture	this.
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idf	weight
▪ dft	is	the	document	frequency	of	t:	the	number	of	
documents	that	contain	t	
▪ dft	is	an	inverse	measure	of	the	informativeness	of	t	
▪ dft		≤ N	

▪ We	define	the	idf	(inverse	document	frequency)	of	t	
by	

▪ We	use	log	(N/dft)	instead	of	N/dft	to	“dampen”	the	effect	
of	idf.

)/df( log  idf 10 tt N=

Will	turn	out	the	base	of	the	log	is	immaterial.
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idf	example,	suppose	N	=	1	million
term dft idft
calpurnia 1

animal 100

sunday 1,000

fly 10,000

under 100,000

the 1,000,000

There	is	one	idf	value	for	each	term	t	in	a	collection.

Sec.	6.2.1
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Effect	of	idf	on	ranking
▪ Does	idf	have	an	effect	on	ranking	for	one-term	
queries,	like	
▪ iPhone	

▪ idf	has	no	effect	on	ranking	one	term	queries	
▪ idf	affects	the	ranking	of	documents	for	queries	with	at	
least	two	terms	

▪ For	the	query	capricious	person,	idf	weighting	makes	
occurrences	of	capricious	count	for	much	more	in	the	final	
document	ranking	than	occurrences	of	person.
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Collection	vs.	Document	frequency

▪ The	collection	frequency	of	t	is	the	number	of	
occurrences	of	t	in	the	collection,	counting	
multiple	occurrences.	

▪ Example:	

▪ Which	word	is	a	better	search	term	(and	should	get	
a	higher	weight)?

Word Collection frequency Document frequency

insurance 10440 3997

try 10422 8760
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tf-idf	weighting

▪ The	tf-idf	weight	of	a	term	is	the	product	of	its	tf	
weight	and	its	idf	weight.	

▪ Best	known	weighting	scheme	in	information	retrieval	
▪ Note:	the	“-”	in	tf-idf	is	a	hyphen,	not	a	minus	sign!	
▪ Alternative	names:	tf.idf,	tf	x	idf	

▪ Increases	with	the	number	of	occurrences	within	a	
document	

▪ Increases	with	the	rarity	of	the	term	in	the	collection

Sec.	6.2.2
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Score	for	a	document	given	a	query

▪ There	are	many	variants	
▪ How	“tf”	is	computed	(with/without	logs)	
▪ Whether	the	terms	in	the	query	are	also	weighted	
▪ …		

▪ Anyone	see	a	problem	with	this?
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Score(q,d) = tf.idft,dt∈q∩d∑
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Long	documents	have	higher	scores!



Binary	→	count	→	weight	matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35

Brutus 1.21 6.1 0 1 0 0

Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0

Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each	document	is	now	represented	by	a	real-valued	vector	of	tf-idf	weights	∈	R|V|
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Documents	as	vectors
▪ So	we	have	a	|V|-dimensional	vector	space	
▪ Terms	are	axes	of	the	space	
▪ Documents	are	points	or	vectors	in	this	space	
▪ Very	high-dimensional:	tens	of	millions	of	dimensions	
when	you	apply	this	to	a	web	search	engine	

▪ These	are	very	sparse	vectors	-	most	entries	are	zero.
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Queries	as	vectors
▪ Key	idea	1:	Do	the	same	for	queries:	represent	them	
as	vectors	in	the	space	

▪ Key	idea	2:	Rank	documents	according	to	their	
proximity	to	the	query	in	this	space	

▪ proximity	=	similarity	of	vectors	
▪ Recall:	We	do	this	because	we	want	to	get	away	from	
the	you’re-either-in-or-out	Boolean	model.	

▪ Instead:	rank	more	relevant	documents	higher	than	
less	relevant	documents
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Formalizing	vector	space	similarity
▪ First	cut:	distance	between	two	points	
▪ (	=	distance	between	the	end	points	of	the	two	vectors)	

▪ Euclidean	distance?	
▪ Euclidean	distance	is	a	bad	idea	.	.	.	
▪ .	.	.	because	Euclidean	distance	is	large	for	vectors	of	
different	lengths.
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Introduction	to	Information	Retrieval 	 	

Why	distance	is	a	bad	idea

The	Euclidean	distance	
between	q	
and	d2	is	large	even	
though	the	
distribution	of	terms	in	
the	query	q	and	the	
distribution	of	
terms	in	the	document	
d2	are	

very	similar.
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Use	angle	instead	of	distance
▪ Thought	experiment:	take	a	document	d	and	append	
it	to	itself.	Call	this	document	dʹ.	

▪ “Semantically”	d	and	dʹ	have	the	same	content	
▪ The	Euclidean	distance	between	the	two	documents	
can	be	quite	large	

▪ The	angle	between	the	two	documents	is	0,	
corresponding	to	maximal	similarity.	

▪ Key	idea:	Rank	documents	according	to	angle	with	
query.
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From	angles	to	cosines
▪ The	following	two	notions	are	equivalent.	
▪ Rank	documents	in	increasing	order	of	the	angle	between	
query	and	document	

▪ Rank	documents	in	decreasing	order		of	
cosine(query,document)	

▪ Cosine	is	a	monotonically	decreasing	function	for	the	
interval	[0o,	180o]
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From	angles	to	cosines

▪ But	how	–	and	why	–	should	we	be	computing	cosines?
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Length	normalization
▪ A	vector	can	be	(length-)	normalized	by	dividing	each	
of	its	components	by	its	length	–	for	this	we	use	the	
L2	norm:	

▪ Dividing	a	vector	by	its	L2	norm	makes	it	a	unit	
(length)	vector	(on	surface	of	unit	hypersphere)	

▪ Effect	on	the	two	documents	d	and	dʹ	(d	appended	to	
itself)	from	earlier	slide:	they	have	identical	vectors	
after	length-normalization.	
▪ Long	and	short	documents	now	have	comparable	weights
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cosine(query,document)
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qi	is	the	tf-idf	weight	of	term	i	in	the	query	
di	is	the	tf-idf	weight	of	term	i	in	the	document	

cos(q,d)	is	the	cosine	similarity	of	q	and	d	…	or,	
equivalently,	the	cosine	of	the	angle	between	q	and	d.
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Cosine	for	length-normalized	vectors
▪ For	length-normalized	vectors,	cosine	similarity	is	
simply	the	dot	product	(or	scalar	product):	

																																			for	q,	d	length-normalized.
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Cosine	similarity	illustrated
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Introduction	to	Information	Retrieval 	 	

Cosine	similarity	amongst	3	documents

term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

wuthering 0 0 38

How	similar	are	
the	novels	
SaS:	Sense	and	
Sensibility	
PaP:	Pride	and	
Prejudice,	and	
WH:	Wuthering	
Heights?

Term	frequencies	(counts)

Sec.	6.3

Note:	To	simplify	this	example,	we	don’t	do	idf	weighting.
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3	documents	example	contd.

Log	frequency	weighting

term SaS PaP WH
affection 3.06 2.76 2.30
jealous 2.00 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

After	length	normalization

term SaS PaP WH
affection 0.789 0.832 0.524
jealous 0.515 0.555 0.465
gossip 0.335 0 0.405
wuthering 0 0 0.588

cos(SaS,PaP)	≈	
0.789	×	0.832	+	0.515	×	0.555	+	0.335	×	0.0	+	0.0	×	0.0	
≈	0.94	
cos(SaS,WH)	≈	0.79	
cos(PaP,WH)	≈	0.69
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tf-idf	weighting	has	many	variants

Columns	headed	‘n’	are	acronyms	for	weight	schemes.

Why	is	the	base	of	the	log	in	idf	immaterial?

Sec.	6.4



Weighting	may	differ	in	queries	vs	documents

▪ Many	search	engines	allow	for	different	weightings	
for	queries	vs.	documents	

▪ SMART	Notation:	denotes	the	combination	in	use	in	
an	engine,	with	the	notation	ddd.qqq,	using	the	
acronyms	from	the	previous	table	

▪ A	very	standard	weighting	scheme	is:	lnc.ltc	
▪ Document:	logarithmic	tf	(l	as	first	character),	no	idf	
and	cosine	normalization	

▪ Query:	logarithmic	tf	(l	in	leftmost	column),	idf	(t	in	
second	column),	cosine	normalization	…
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tf-idf	example:	lnc.ltc

Term Query Document Prod

tf-
raw

tf-wt df idf wt n’lize tf-raw tf-wt wt n’lize

auto 0 0 5000 2.3 0 0 1 1 1 0.52 0
best 1 1 50000 1.3 1.3 0.34 0 0 0 0 0
car 1 1 10000 2.0 2.0 0.52 1 1 1 0.52 0.27
insurance 1 1 1000 3.0 3.0 0.78 2 1.3 1.3 0.68 0.53

Document:	car	insurance	auto	insurance	
Query:	best	car	insurance
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Summary	–	vector	space	ranking

▪ Represent	the	query	as	a	weighted	tf-idf	vector	
▪ Represent	each	document	as	a	weighted	tf-idf	vector	
▪ Compute	the	cosine	similarity	score	for	the	query	
vector	and	each	document	vector	

▪ Rank	documents	with	respect	to	the	query	by	score	
▪ Return	the	top	K	(e.g.,	K	=	10)	to	the	user


