Spelling Correction and the Noisy Channel

The Spelling Correction Task

Klinton Bicknell

(borrowing from: Dan Jurafsky and Jim Martin)

Applications for spelling correction

Dhonos

Word processing

	word processing	1101163
	Spelling and Grammar: English (US)	New iMessage Cancel
Spell checking is a <mark>componant</mark> of	Not in dictionary:	To: Dan Jurafsky
	Spell checking is a componant of Ignore Ignore All	
	Add	
	Suggestions: Change Change	late ×
	Change All	Sorry, running layr Send
	AutoCorrect	QWERTYUIOP
	Web search	ASDFGHJKL
I I I I		🔶 Z X C V B N M 💌
ploogle	natural langage processing	
		123 🌐 space return
2 Showing	results for natural language processing	
	stead for natural langage processing	

Spelling Tasks

- Spelling Error Detection
- Spelling Error Correction:
 - Autocorrect
 - hte→the
 - Suggest a correction
 - Suggestion lists

Types of spelling errors

- Non-word Errors
 - graffe \rightarrow giraffe
- Real-word Errors
 - Typographical errors
 - three \rightarrow there
 - Cognitive Errors (homophones)
 - $piece \rightarrow peace$,
 - $too \rightarrow two$

Rates of spelling errors

- 26%: Web queries Wang et al. 2003
- **13%:** Retyping, no backspace: Whitelaw *et al.* English&German
- **7**%: Words corrected retyping on phone-sized organizer
- 2%: Words uncorrected on organizer Soukoreff & MacKenzie 2003
- **1-2%:** Retyping: Kane and Wobbrock 2007, Gruden et al. 1983

Non-word spelling errors

- Non-word spelling error detection:
 - Any word not in a *dictionary* is an error
 - The larger the dictionary the better
- Non-word spelling error correction:
 - Generate *candidates*: real words that are similar to error
 - Choose the one which is best:
 - Shortest weighted edit distance
 - Highest noisy channel probability

Real word spelling errors

- For each word *w*, generate candidate set:
 - Find candidate words with similar *pronunciations*
 - Find candidate words with similar *spelling*
 - Include w in candidate set
- Choose best candidate
 - Noisy Channel
 - Classifier

Spelling Correction and the Noisy Channel

The Spelling Correction Task

Spelling Correction and the Noisy Channel

The Noisy Channel Model of Spelling

Noisy Channel Intuition

Noisy Channel

- We see an observation x of a misspelled word
- Find the correct word w

$$\hat{W} = \underset{w \in V}{\operatorname{argmax}} P(w \mid x)$$
$$= \underset{w \in V}{\operatorname{argmax}} \frac{P(x \mid w) P(w)}{P(x)}$$
$$= \underset{w \in V}{\operatorname{argmax}} P(x \mid w) P(w)$$

History: Noisy channel for spelling proposed around 1990

• IBM

Mays, Eric, Fred J. Damerau and Robert L. Mercer. 1991.
 Context based spelling correction. *Information Processing and Management*, 23(5), 517–522

AT&T Bell Labs

 Kernighan, Mark D., Kenneth W. Church, and William A. Gale. 1990. A spelling correction program based on a noisy channel model. Proceedings of COLING 1990, 205-210

Non-word spelling error example

acress

Candidate generation

- Words with similar spelling
 - Small edit distance to error
- Words with similar pronunciation
 - Small edit distance of pronunciation to error

Damerau-Levenshtein edit distance

- Minimal edit distance between two strings, where edits are:
 - Insertion
 - Deletion
 - Substitution
 - Transposition of two adjacent letters (not included in Levenshtein edit distance)

Words within 1 of acress

Error	Candidate	Correct	Error	Туре
acress	actress	t	-	deletion
acress	cress	-	а	insertion
acress	caress	са	ac	transposition
acress	access	С	r	substitution
acress	across	0	е	substitution
acress	acres	-	S	insertion
acress	acres	-	S	insertion

Candidate generation

- 80% of errors are within edit distance 1
- Almost all errors within edit distance 2

- Also allow insertion of **space** or **hyphen**
 - this idea \rightarrow this idea
 - inlaw \rightarrow in-law

Language Model

- Use any of the language modeling algorithms we've learned
- Unigram, bigram, trigram
- Web-scale spelling correction
 - Stupid backoff

Unigram Prior probability

Counts from 404,253,213 words in Corpus of Contemporary English (COCA)

word	Frequency of word	P(word)
actress	9,321	.0000230573
cress	220	.000005442
caress	686	.0000016969
access	37,038	.0000916207
across	120,844	.0002989314
acres	12,874	.0000318463

Channel model probability

- Error model probability, Edit probability
- Kernighan, Church, Gale 1990

• Misspelled word $x = x_1, x_2, x_3... x_m$

- P(x|w) = probability of the edit
 - (deletion/insertion/substitution/transposition)

Computing error probability: confusion matrix

del[x,y]:	count(xy typed as x)
<pre>ins[x,y]:</pre>	count(x typed as xy)
<pre>sub[x,y]:</pre>	count(x typed as y)
<pre>trans[x,y]:</pre>	count(xy typed as yx)

Insertion and deletion conditioned on previous character

Confusion matrix for spelling errors

CI 1 11 11 A 117 /1

1 7 8 7 8 7 1

	sub[X, Y] = Substitution of X (incorrect) for Y (correct)																									
Х												Y	(coi	rrect)												
	a	b	С	d	e	f	g	h	i	j	k	1	m	n	0	р	q	r	S	t	u	v	w	х	У	Z
a	0	0	7	1	342	0	0	2	118	0	1	0	0	3	76	0	0	1	35	9	9	0	1	0	5	0
b	0	0	9	9	2	2	3	1	0	0	0	5	11	5	0	10	0	0	2	1	0	0	8	0	0	0
с	6	5	0	16	0	9	5	0	0	0	1	0	7	9	1	10	2	5	39	40	1	3	7	1	1	0
d	1	10	13	0	12	0	5	5	0	0	2	3	7	3	0	1	0	43	30	22	0	0	4	0	2	0
e	388	0	3	11	0	2	2	0	89	0	0	3	0	5	93	0	0	14	12	6	15	0	1	0	18	0
f	0	15	0	3	1	0	5	2	0	0	0	3	4	1	0	0	0	6	4	12	0	0	2	0	0	0
g	4	1	11	11	9	2	0	0	0	1	1	3	0	0	2	1	3	5	13	21	0	0	1	0	3	0
h	1	8	0	3	0	0	0	0	0	0	2	0	12	14	2	3	0	3	1	11	0	0	2	0	0	0
i	103	0	0	0	146	0	1	0	0	0	0	6	0	0	49	0	0	0	2	1	47	0	2	1	15	0
j	0	1	1	9	0	0	1	0	0	0	0	2	1	0	0	0	0	0	5	0	0	0	0	0	0	0
k	1	2	8	4	1	1	2	5	0	0	0	0	5	0	2	0	0	0	6	0	0	0	4	0	0	3
1	2	10	1	4	0	4	5	6	13	0	1	0	0	14	2	5	0	11	10	2	0	0	0	0	0	0
m	1	3	7	8	0	2	0	6	0	0	4	4	0	180	0	6	0	0	9	15	13	3	2	2	3	0
n	2	7	6	5	3	0	1	19	1	0	4	35	78	0	0	7	0	28	5	7	0	0	1	2	0	2
0	91	1	1	3	116	0	0	0	25	0	2	0	0	0	0	14	0	2	4	14	39	0	0	0	18	0
р	0	11	1	2	0	6	5	0	2	9	0	2	7	6	15	0	0	1	3	6	0	4	1	0	0	0
q	0	0	1	0	0	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r	0	14	0	30	12	2	2	8	2	0	5	8	4	20	1	14	0	0	12	22	4	0	0	1	0	0
S	11	8	27	33	35	4	0	1	0	1	0	27	0	6	1	7	0	14	0	15	0	0	5	3	20	1
t	3	4	9	42	7	5	19	5	0	1	0	14	9	5	5	6	0	11	37	0	0	2	19	0	7	6
u	20	0	0	0	44	0	0	0	64	0	0	0	0	2	43	0	0	4	0	0	0	0	2	0	8	0
v	0	0	7	0	0	3	0	0	0	0	0	1	0	0	1	0	0	0	8	3	0	0	0	0	0	0
w	2	2	1	0	1	0	0	2	0	0	1	0	0	0	0	7	0	6	3	3	1	0	0	0	0	0
x	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0
У	0	0	2	0	15	0	1	7	15	0	0	0	2	0	6	1	0	7	36	8	5	0	0	1	0	0
z	0	0	0	7	0	0	0	0	0	0	0	7	5	0	0	0	0	2	21	3	0	0	0	0	3	0

1 A 877

Generating the confusion matrix

- Peter Norvig's list of errors
- Peter Norvig's list of counts of single-edit errors

Channel model

Kernighan, Church, Gale 1990

$$P(x|w) = \begin{cases} \frac{\mathrm{del}[w_{i-1}, w_i]}{\mathrm{count}[w_{i-1}w_i]}, & \text{if deletion} \\ \frac{\mathrm{ins}[w_{i-1}, x_i]}{\mathrm{count}[w_{i-1}]}, & \text{if insertion} \\ \frac{\mathrm{sub}[x_i, w_i]}{\mathrm{count}[w_i]}, & \text{if substitution} \\ \frac{\mathrm{trans}[w_i, w_{i+1}]}{\mathrm{count}[w_iw_{i+1}]}, & \text{if transposition} \end{cases}$$

Channel model for acress

Candidate	Correct	Error	x w	P(x word)
actress	t	-	c/ct	.000117
cress	-	а	a #	.00000144
caress	са	ac	ac ca	.00000164
access	C	r	r/c	.000000209
across	0	е	e/o	.0000093
acres	-	S	es e	.0000321
acres	-	S	ss s	.0000342

Noisy channel probability for acress

Candidate	Correct	Error	xw	P(x word)	P(word)	10 ⁹ *P(x w)P(w)
actress	t	-	c/ct	.000117	.0000231	2.7
cress	-	а	a #	.00000144	.000000544	.00078
caress	ca	ac	ac ca	.00000164	.00000170	.0028
access	C	r	r/c	.000000209	.0000916	.019
across	0	е	e/o	.0000093	.000299	2.8
acres	-	S	es/e	.0000321	.0000318	1.0
acres	-	S	ss s	.0000342	.0000318	1.0

Noisy channel probability for acress

Candidate	Correct	Error	xw	P(x word)	P(word)	10 ⁹ *P(x w)P(w)
actress	t	-	c/ct	.000117	.0000231	2.7
cress	-	а	a #	.00000144	.000000544	.00078
caress	ca	ac	ac ca	.00000164	.00000170	.0028
access	C	r	r/c	.000000209	.0000916	.019
across	0	е	e/o	.0000093	.000299	2.8
acres	-	S	es/e	.0000321	.0000318	1.0
acres	-	S	ss s	.0000342	.0000318	1.0

Using a bigram language model

- "a stellar and versatile acress whose combination of sass and glamour..."
- Counts from the Corpus of Contemporary American English with add-1 smoothing
- P(actress | versatile) = .000021 P(whose | actress) = .0010
- P(across|versatile) =.000021 P(whose|across) = .000006
- P("versatile actress whose") = .000021*.0010 = 210 x10⁻¹⁰
- P("versatile across whose") = $.000021 \times .000006 = 1 \times 10^{-10}$

Using a bigram language model

- "a stellar and versatile acress whose combination of sass and glamour..."
- Counts from the Corpus of Contemporary American English with add-1 smoothing
- P(actress | versatile) = .000021 P(whose | actress) = .0010
- P(across | versatile) =.000021 P(whose | across) = .000006
- P("versatile actress whose") = .000021*.0010 = 210 x10⁻¹⁰
- P("versatile across whose") = $.000021 \times .000006 = 1 \times 10^{-10}$

Evaluation

- Some spelling error test sets
 - <u>Wikipedia's list of common English misspelling</u>
 - Aspell filtered version of that list
 - <u>Birkbeck spelling error corpus</u>
 - <u>Peter Norvig's list of errors (includes Wikipedia and Birkbeck, for training or testing)</u>

Spelling Correction and the Noisy Channel

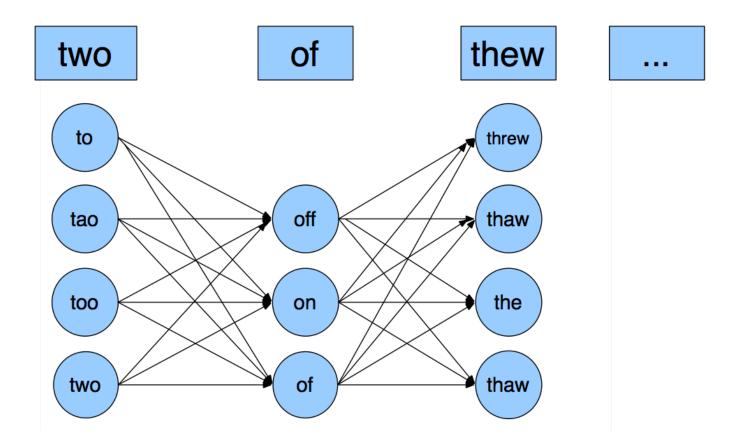
The Noisy Channel Model of Spelling

Spelling Correction and the Noisy Channel

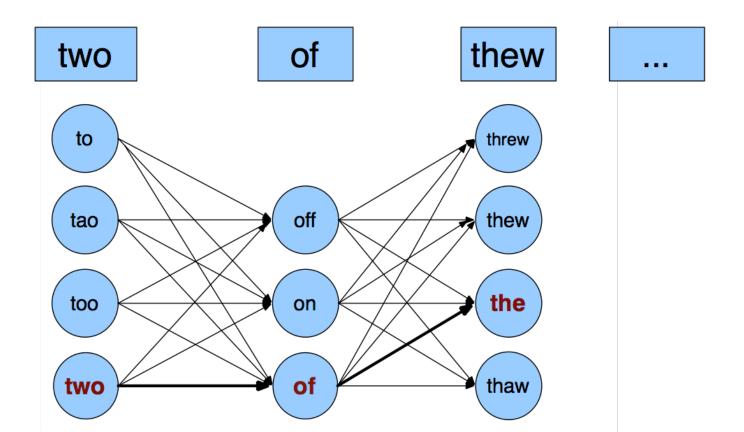
Real-Word Spelling Correction

Real-word spelling errors

- ...leaving in about fifteen *minuets* to go to her house.
- The design **an** construction of the system ...
- Can they *lave* him my messages?
- The study was conducted mainly **be** John Black.
- 25-40% of spelling errors are real words Kukich 1992


Solving real-world spelling errors

- For each word in sentence
 - Generate *candidate set*
 - the word itself
 - all single-letter edits that are English words
 - words that are homophones
- Choose best candidates
 - Noisy channel model
 - Task-specific classifier


Noisy channel for real-word spell correction

- Given a sentence w₁, w₂, w₃,..., w_n
- Generate a set of candidates for each word w_i
 - Candidate(w₁) = {w₁, w'₁, w''₁, w'''₁,...}
 - Candidate(w₂) = {w₂, w'₂, w''₂, w'''₂,...}
 - Candidate(w_n) = {w_n, w'_n, w''_n, w'''_n,...}
- Choose the sequence W that maximizes P(W)

Noisy channel for real-word spell correction

Noisy channel for real-word spell correction

37

Simplification: One error per sentence

- Out of all possible sentences with one word replaced
 - w_1, w''_2, w_3, w_4 two off thew
 - w_1, w_2, w_3, w_4 two of the
 - $\mathbf{w'''}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \mathbf{w}_{4}$ too of thew
 - ...
- Choose the sequence W that maximizes P(W)

Where to get the probabilities

- Language model
 - Unigram
 - Bigram
 - Etc
- Channel model
 - Same as for non-word spelling correction
 - Plus need probability for no error, P(w|w)

Probability of no error

- What is the channel probability for a correctly typed word?
- P("the" | "the")

- Obviously this depends on the application
 - .90 (1 error in 10 words)
 - .95 (1 error in 20 words)
 - .99 (1 error in 100 words)
 - .995 (1 error in 200 words)

Peter Norvig's "thew" example

х	w	x w	P(x w)	P(w)	10 ⁹ P(x w)P(w)
thew	the	ew e	0.000007	0.02	144
thew	thew		0.95	0.0000009	90
thew	thaw	e a	0.001	0.000007	0.7
thew	threw	h hr	0.00008	0.00004	0.03
thew	thwe	ew we	0.00003	0.0000004	0.0001

Spelling Correction and the Noisy Channel

Real-Word Spelling Correction

Spelling Correction and the Noisy Channel

State-of-the-art Systems

HCI issues in spelling

- If very confident in correction
 - Autocorrect
- Less confident
 - Give the best correction
- Less confident
 - Give a correction list
- Unconfident
 - Just flag as an error

State of the art noisy channel

- We never just multiply the prior and the error model
- Instead: Weigh them

$$\hat{W} = \underset{w \in V}{\operatorname{argmax}} P(x | w) P(w)^{\lambda}$$

• Learn λ from a development test set

Channel model

- Factors that could influence p(misspelling|word)
 - The source letter
 - The target letter
 - Surrounding letters
 - The position in the word
 - Nearby keys on the keyboard
 - Homology on the keyboard
 - Pronunciations
 - Likely morpheme transformations

Nearby keys

Classifier-based methods for real-word spelling correction

- Instead of just channel model and language model
- Use many features in a classifier.
- Build a classifier for a specific pair like: whether/weather
 - "cloudy" within +- 10 words
 - ____ to VERB
 - ____ or not
- Why do this?

Spelling Correction and the Noisy Channel

Real-Word Spelling Correction