
Introduction	to	N-grams

 
Language	Modeling

Klinton Bicknell

(borrowing from: Dan Jurafsky and Jim Martin)

Probabilistic	Language	Models

• Today’s	goal:	assign	a	probability	to	a	sentence	
• Machine	Translation:	

• P(high	winds	tonite)	>	P(large	winds	tonite)	

• Spell	Correction	
• The	office	is	about	fifteen	minuets	from	my	house	

• P(about	fifteen	minutes	from)	>	P(about	fifteen	minuets	from)	

• Speech	Recognition	
• P(I	saw	a	van)	>>	P(eyes	awe	of	an)	

• +	Summarization,	question-answering,	etc.,	etc.!!

Why?

Probabilistic	Language	Modeling

• Goal:	compute	the	probability	of	a	sentence	or	sequence	of	
words:	
					P(W)	=	P(w1,w2,w3,w4,w5…wn)	

• Related	task:	probability	of	an	upcoming	word:	
						P(w5|w1,w2,w3,w4)	

• A	model	that	computes	either	of	these:	
										P(W)					or					P(wn|w1,w2…wn-1)										is	called	a	language	model.	

• aka:	the	grammar							But	language	model	or	LM	is	standard

How	to	compute	P(W)

• How	to	compute	this	joint	probability:	

• P(its,	water,	is,	so,	transparent,	that)	

• Intuition:	let’s	rely	on	the	Chain	Rule	of	Probability

Reminder:	The	Chain	Rule

• Recall	the	definition	of	conditional	probabilities	
p(B|A)	=	P(A,B)/P(A)	 Rewriting:			P(A,B)	=	P(A)P(B|A)	

• More	variables:	
	P(A,B,C,D)	=	P(A)P(B|A)P(C|A,B)P(D|A,B,C)	

• The	Chain	Rule	in	General	
		P(x1,x2,x3,…,xn)	=	P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1,…,xn-1)

The	Chain	Rule	applied	to	compute	joint	probability	of	words	in	
sentence

P(“its	water	is	so	transparent”)	=	
	 P(its)	×	P(water|its)	×		P(is|its	water)		
									×		P(so|its	water	is)	×		P(transparent|its	water	is	so)

€

P(w1w2…wn) = P(wi |w1w2…wi−1)
i
∏

How	to	estimate	these	probabilities

• Could	we	just	count	and	divide?	

• No!		Too	many	possible	sentences!	
• We’ll	never	see	enough	data	for	estimating	these

€

P(the | its water is so transparent that) =

Count(its water is so transparent that the)
Count(its water is so transparent that)

Markov	Assumption

• Simplifying	assumption:	

• Or	maybe

€

P(the | its water is so transparent that) ≈ P(the | that)

€

P(the | its water is so transparent that) ≈ P(the | transparent that)

Andrei	Markov

Markov	Assumption

• In	other	words,	we	approximate	each	
component	in	the	product

€

P(w1w2…wn) ≈ P(wi |wi−k…wi−1)
i
∏

€

P(wi |w1w2…wi−1) ≈ P(wi |wi−k…wi−1)

Simplest	case:	Unigram	model

fifth, an, of, futures, the, an, incorporated, a, a,
the, inflation, most, dollars, quarter, in, is, mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Some	automatically	generated	sentences	from	a	unigram	model

€

P(w1w2…wn) ≈ P(wi)
i
∏

Condition	on	the	previous	word:

Bigram	model

texaco, rose, one, in, this, issue, is, pursuing, growth, in,
a, boiler, house, said, mr., gurria, mexico, 's, motion,
control, proposal, without, permission, from, five, hundred,
fifty, five, yen

outside, new, car, parking, lot, of, the, agreement, reached

this, would, be, a, record, november

€

P(wi |w1w2…wi−1) ≈ P(wi |wi−1)

N-gram	models

• We	can	extend	to	trigrams,	4-grams,	5-grams	
• In	general	this	is	an	insufficient	model	of	language	

• because	language	has	long-distance	dependencies:	

“The	computer	which	I	had	just	put	into	the	machine	room	on	
the	fifth	floor	crashed.”	

• But	we	can	often	get	away	with	N-gram	models

Introduction	to	N-grams

 
Language	Modeling

Estimating	N-gram	
Probabilities

 
Language	Modeling

Estimating	bigram	probabilities

• The	Maximum	Likelihood	Estimate

€

P(wi |wi−1) =
count(wi−1,wi)
count(wi−1)

€

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

An	example

<s>	I	am	Sam	</s>	
<s>	Sam	I	am	</s>	
<s>	I	do	not	like	green	eggs	and	ham	</s>

€

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

More	examples:	  
Berkeley	Restaurant	Project	sentences

• can	you	tell	me	about	any	good	cantonese	restaurants	close	by	
• mid	priced	thai	food	is	what	i’m	looking	for	
• tell	me	about	chez	panisse	
• can	you	give	me	a	listing	of	the	kinds	of	food	that	are	available	
• i’m	looking	for	a	good	place	to	eat	breakfast	
• when	is	caffe	venezia	open	during	the	day

Raw	bigram	counts

• Out	of	9222	sentences

Raw	bigram	probabilities

• Normalize	by	unigrams:	

• Result:

Bigram	estimates	of	sentence	probabilities

P(<s>	I	want	english	food	</s>)	=	
	 P(I|<s>)				
		 ×		P(want|I)			
	 ×		P(english|want)				
	 ×		P(food|english)				
	 ×		P(</s>|food)	
							=		.000031

What	kinds	of	knowledge?

• P(english|want)		=	.0011	
• P(chinese|want)	=		.0065	
• P(to|want)	=	.66	
• P(eat	|	to)	=	.28	
• P(food	|	to)	=	0	
• P(want	|	spend)	=	0	
• P	(i	|	<s>)	=	.25

Practical	Issues

• We	do	everything	in	log	space	
• Avoid	underflow	

• (also	adding	is	faster	than	multiplying)

log(p1 × p2 × p3 × p4) = log p1 + log p2 + log p3 + log p4

Language	Modeling	Toolkits

• SRILM	
• http://www.speech.sri.com/projects/srilm/	

• KenLM	
• https://kheafield.com/code/kenlm/

http://www.speech.sri.com/projects/srilm/
http://www.speech.sri.com/projects/srilm/
https://kheafield.com/code/kenlm/

Google	N-Gram	Release,	August	2006

…

Google	N-Gram	Release

• serve as the incoming 92
• serve as the incubator 99
• serve as the independent 794
• serve as the index 223
• serve as the indication 72
• serve as the indicator 120
• serve as the indicators 45
• serve as the indispensable 111
• serve as the indispensible 40
• serve as the individual 234

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

Google	Book	N-grams

• https://books.google.com/ngrams

https://books.google.com/ngrams

Estimating	N-gram	
Probabilities

 
Language	Modeling

Evaluation	and	Perplexity

 
Language	Modeling

Evaluation:	How	good	is	our	model?

• Does	our	language	model	prefer	good	sentences	to	bad	ones?	
• Assign	higher	probability	to	“real”	or	“frequently	observed”	sentences		

• Than	“ungrammatical”	or	“rarely	observed”	sentences?	

• We	train	parameters	of	our	model	on	a	training	set.	
• We	test	the	model’s	performance	on	data	we	haven’t	seen.	

• A	test	set	is	an	unseen	dataset	that	is	different	from	our	training	set,	totally	
unused.	

• An	evaluation	metric	tells	us	how	well	our	model	does	on	the	test	set.

Training	on	the	test	set

• We	can’t	allow	part	of	the	test	set	into	the	training	set	
• We	will	assign	it	an	artificially	high	probability	when	we	set	it	in	

the	test	set	
• “Training	on	the	test	set”	
• Bad	science!	
• And	violates	the	honor	code

30

Extrinsic	evaluation	of	N-gram	models

• Best	evaluation	for	comparing	models	A	and	B	
• Put	each	model	in	a	task	

• 	spelling	corrector,	speech	recognizer,	MT	system	

• Run	the	task,	get	an	accuracy	for	A	and	for	B	
• How	many	misspelled	words	corrected	properly	
• How	many	words	translated	correctly	

• Compare	accuracy	for	A	and	B

Difficulty	of	extrinsic	(in-vivo)	evaluation	of		N-gram	models

• Extrinsic	evaluation	
• Time-consuming;	can	take	days	or	weeks	

• So	
• Sometimes	use	intrinsic	evaluation:	perplexity	
• Bad	approximation		

• unless	the	test	data	looks	just	like	the	training	data	
• So	generally	only	useful	in	pilot	experiments	

• But	is	helpful	to	think	about.

Intuition	of	Perplexity

• The	Shannon	Game:	
• How	well	can	we	predict	the	next	word?	

• Unigrams	are	terrible	at	this	game.		(Why?)	

• A	better	model	of	a	text	
• 	is	one	which	assigns	a	higher	probability	to	the	word	that	actually	occurs

I	always	order	pizza	with	cheese	and	____

The	33rd	President	of	the	US	was	____

I	saw	a	____

mushrooms 0.1

pepperoni 0.1

anchovies 0.01

….
fried rice 0.0001

….
and 1e-100

Perplexity

Perplexity	is	the	inverse	probability	of	
the	test	set,	normalized	by	the	number	
of	words:	

																																															Chain	rule:	

																																														For	bigrams:

Minimizing	perplexity	is	the	same	as	maximizing	probability

The	best	language	model	is	one	that	best	predicts	an	unseen	test	set	
• Gives	the	highest	P(sentence)

PP(W) = P(w1w2...wN)
−

1
N

 =
1

P(w1w2...wN)
N

Perplexity	as	branching	factor

• Let’s	suppose	a	sentence	consisting	of	random	digits	
• What	is	the	perplexity	of	this	sentence	according	to	a	model	that	

assign	P=1/10	to	each	digit?

Lower	perplexity	=	better	model

• Training	38	million	words,	test	1.5	million	words,	WSJ

N-gram	
Order

Unigram Bigram Trigram

Perplexity 962 170 109

Evaluation	and	Perplexity

 
Language	Modeling

Interlude:	Word	clouds

 
Language	Modeling

Word	clouds

from	state	of	the	union	address,	2011

Word	clouds

word	size	is	related	to	(often	proportional	to)	word	frequency 
(aka	unigram	probability)	

but	doing	this	naively	won't	work:	why?

Word	clouds

Standard	hack:	stop	words

from	nltk.corpus	import	stopwords	
stopwords.words('english')	

also	see	external	links	at	https://en.wikipedia.org/wiki/Stop_words	

later,	we'll	see	a	more	principled	way	to	solve	this:	tf-idf	weighting 
(though	in	practice,	stop	words	are	still	used	even	there)

throw	out	words	we	never	care	about:	function	words	(a	
predefined	list)	
- note:	this	means	'yes	we	can'	(2008	slogan)	cannot	appear!

https://en.wikipedia.org/wiki/Stop_words

Interlude:	Word	clouds

 
Language	Modeling

Generalization	and	zeros

 
Language	Modeling

Zipf's	law
• informally	

• most	word	types	occur	rarely	
• a	few	word	types	occur	a	lot	

• formally:	word	distributions	follow	"power	laws"	
• implications	

• frequent	function	words	can	easily	account	for	50%	of	tokens	
• ~40–60%	of	types	occur	only	once	
• in	many	applications,	we	can	ignore	very	common	and	very	rare	words:	

this	saves	a	lot	of	resources!	
• but	language	modeling	is	not	one	of	those	applications

Zipf's	law

The	Shannon	Visualization	Method

• Choose	a	random	bigram		
					(<s>,	w)	according	to	its	probability	
• Now	choose	a	random	bigram								(w,	

x)	according	to	its	probability	
• And	so	on	until	we	choose	</s>	
• Then	string	the	words	together

<s> I
 I want
 want to
 to eat
 eat Chinese
 Chinese food
 food </s>
I want to eat Chinese food

Approximating	Shakespeare

Shakespeare	as	corpus

• N=884,647	tokens,	V=29,066	
• Shakespeare	produced	300,000	bigram	types	out	
of	V2=	844	million	possible	bigrams.	
• So	99.96%	of	the	possible	bigrams	were	never	seen	
(have	zero	entries	in	the	table)	

• Quadrigrams	worse:			What's	coming	out	looks	
like	Shakespeare	because	it	is	Shakespeare

The	wall	street	journal	is	not	shakespeare	(no	offense)

Can	you	guess	the	author	of	these	random	
3-gram	sentences?

• They	also	point	to	ninety	nine	point	six	billion	dollars	from	two	
hundred	four	oh	six	three	percent	of	the	rates	of	interest	stores	
as	Mexico	and	gram	Brazil	on	market	conditions		

• This	shall	forbid	it	should	be	branded,	if	renown	made	it	empty.		
• “You	are	uniformly	charming!”	cried	he,	with	a	smile	of	

associating	and	now	and	then	I	bowed	and	they	perceived	a	
chaise	and	four	to	wish	for.	

51

The	perils	of	overfitting

• N-grams	only	work	well	for	word	prediction	if	the	test	
corpus	looks	like	the	training	corpus	
• In	real	life,	it	often	doesn’t	
• We	need	to	train	robust	models	that	generalize!	
• One	kind	of	generalization:	Zeros!	

• Things	that	don’t	ever	occur	in	the	training	set	
• But	occur	in	the	test	set

Zeros

• Training	set:	
…	denied	the	allegations	
…	denied	the	reports	
…	denied	the	claims	
…	denied	the	request	

P(“offer”	|	denied	the)	=	0

• Test	set	
…	denied	the	offer	
…	denied	the	loan

Zero	probability	bigrams

• Bigrams	with	zero	probability	
• mean	that	we	will	assign	0	probability	to	the	test	set!	

• And	hence	we	cannot	compute	perplexity	(can’t	divide	by	0)!

Generalization	and	zeros

 
Language	Modeling

Smoothing:	Add-one	
(Laplace)	smoothing

 
Language	Modeling

The intuition of smoothing (from Dan Klein)

• When	we	have	sparse	statistics:	

• Steal	probability	mass	to	generalize	better

P(w	|	denied	the)
		3	allegations
		2	reports
		1	claims
		1	request
		7	total

P(w	|	denied	the)
		2.5	allegations
		1.5	reports
		0.5	claims
		0.5	request
		2	other
		7	total

al
le

g
at

io
n
s

re
p
o
rt

s

cl
ai

m
s

at
ta

ck

re
q
u
es

t

m
an

ou
tc

om
e

…

al
le

g
at

io
n
s

at
ta

ck

m
an

ou
tc

om
e

…al
le

g
at

io
n
s

re
p
o
rt

s

cl
ai

m
s

re
q
u
es

t

Add-one	estimation

• Also	called	Laplace	smoothing	
• Pretend	we	saw	each	word	one	more	time	than	we	did	
• Just	add	one	to	all	the	counts!	

• MLE	estimate:	

• Add-1	estimate:

PMLE(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

PAdd−1(wi |wi−1) =
c(wi−1,wi)+1
c(wi−1)+V

Maximum	Likelihood	Estimates
• The	maximum	likelihood	estimate	

• of	some	parameter	of	a	model	M	from	a	training	set	T	
• maximizes	the	likelihood	of	the	training	set	T	given	the	model	M	

• Suppose	the	word	“bagel”	occurs	400	times	in	a	corpus	of	a	million	words	
• What	is	the	probability	that	a	random	word	from	some	other	text	will	be	

“bagel”?	
• MLE	estimate	is	400/1,000,000	=	.0004	

• This	may	be	a	bad	estimate	for	some	other	corpus	
• But	it	is	the	estimate	that	makes	it	most	likely	that	“bagel”	will	occur	400	times	in	a	
million	word	corpus.

Berkeley Restaurant Corpus: Laplace smoothed
bigram counts

Laplace-smoothed bigrams

Reconstituted counts

Compare with raw bigram counts

Add-1	estimation	is	a	blunt	instrument

• So	add-1	isn’t	used	for	N-grams:		
• We’ll	see	better	methods	

• But	add-1	is	used	to	smooth	other	NLP	models	
• For	text	classification		
• In	domains	where	the	number	of	zeros	isn’t	so	huge.

Smoothing:	Add-one	
(Laplace)	smoothing

 
Language	Modeling

Interpolation,	Backoff,	
and	Web-Scale	LMs

 
Language	Modeling

Backoff and Interpolation
• Sometimes	it	helps	to	use	less	context	

• Condition	on	less	context	for	contexts	you	haven’t	learned	much	about		

• Backoff:		
• use	trigram	if	you	have	good	evidence,	
• otherwise	bigram,	otherwise	unigram	

• Interpolation:		
• mix	unigram,	bigram,	trigram	

• Interpolation	works	better

Linear	Interpolation

• Simple	interpolation	

• Lambdas	conditional	on	context:

How	to	set	the	lambdas?

• Use	a	held-out	corpus	

• Choose	λs	to	maximize	the	probability	of	held-out	data:	
• Fix	the	N-gram	probabilities	(on	the	training	data)	
• Then	search	for	λs	that	give	largest	probability	to	held-out	set:

Training	Data Held-Out	
Data

Test		
Data

logP(w1...wn |M (λ1...λk)) = logPM (λ1...λk) (wi |wi−1)
i
∑

Unknown	words:	Open	versus	closed	vocabulary	tasks
• If	we	know	all	the	words	in	advanced	

• Vocabulary	V	is	fixed	
• Closed	vocabulary	task	

• Often	we	don’t	know	this	
• Out	Of	Vocabulary	=	OOV	words	
• Open	vocabulary	task	

• Instead:	create	an	unknown	word	token	<UNK>	
• Training	of	<UNK>	probabilities	

• Create	a	fixed	lexicon	L	of	size	V	
• At	text	normalization	phase,	any	training	word	not	in	L	changed	to		<UNK>	
• Now	we	train	its	probabilities	like	a	normal	word	

• At	decoding	time	
• If	text	input:	Use	UNK	probabilities	for	any	word	not	in	training

Huge	web-scale	n-grams
• How	to	deal	with,	e.g.,	Google	N-gram	corpus	
• Pruning	

• Only	store	N-grams	with	count	>	threshold.	
• Remove	singletons	of	higher-order	n-grams	

• Entropy-based	pruning	
• Efficiency	

• Efficient	data	structures	like	tries	
• Bloom	filters:	approximate	language	models	
• Use	Huffman	coding	to	fit	large	numbers	of	words	into	two	bytes	
• Quantize	probabilities	(4-8	bits	instead	of	8-byte	float)

Smoothing	for	Web-scale	N-grams

• “Stupid	backoff”	(Brants	et	al.	2007)	
• No	discounting,	just	use	relative	frequencies	

72

S(wi |wi−k+1
i−1) =

count(wi−k+1
i)

count(wi−k+1
i−1)

 if count(wi−k+1
i) > 0

0.4S(wi |wi−k+2
i−1) otherwise

"

#
$$

%
$
$

S(wi) =
count(wi)

N

N-gram	Smoothing	Summary

• Add-1	smoothing:	
• OK	for	text	categorization,	not	for	language	modeling	

• The	most	commonly	used	method:	
• Extended	Interpolated	Kneser-Ney	

• For	very	large	N-grams	like	the	Web:	
• Stupid	backoff

73

Advanced Language Modeling
• Discriminative	models:	

• 	choose	n-gram	weights	to	improve	a	task,	not	to	fit	the		
training	set	

• Parsing-based	models	
• Caching	Models	

• Recently	used	words	are	more	likely	to	appear	

PCACHE(w |history) = λP(wi |wi−2wi−1)+ (1−λ)
c(w∈ history)
| history |

Interpolation,	Backoff,	
and	Web-Scale	LMs

 
Language	Modeling

Language
Modeling

Advanced:

Kneser-Ney Smoothing

Absolute discounting: just subtract a little from each
count

• Suppose	we	wanted	to	subtract	a	little	from	a	count	of	4	to	save	
probability	mass	for	the	zeros	

• How	much	to	subtract	?	

• Church	and	Gale	(1991)’s	clever	idea	
• Divide	up	22	million	words	of	AP	Newswire	

• Training	and	held-out	set	
• for	each	bigram	in	the	training	set	
• see	the	actual	count	in	the	held-out	set!	

• It	sure	looks	like	c*	=	(c	-	.75)

Bigram	count	in	
training

Bigram	count	in	
heldout	set

0 .0000270
1 0.448
2 1.25
3 2.24
4 3.23
5 4.21
6 5.23
7 6.21
8 7.21
9 8.26

Absolute Discounting Interpolation
• Save	ourselves	some	time	and	just	subtract	0.75	(or	some	d)!	

• (Maybe	keeping	a	couple	extra	values	of	d	for	counts	1	and	2)	
• But	should	we	really	just	use	the	regular	unigram	P(w)?

78

PAbsoluteDiscounting (wi |wi−1) =
c(wi−1,wi)−d

c(wi−1)
+λ(wi−1)P(w)

discounted bigram

unigram

Interpolation weight

• Better	estimate	for	probabilities	of	lower-order	unigrams!	
• Shannon	game:		I	can’t	see	without	my	reading___________?	
• “Francisco”	is	more	common	than	“glasses”	
• …	but	“Francisco”	always	follows	“San”	

• The	unigram	is	useful	exactly	when	we	haven’t	seen	this	bigram!	
• Instead	of		P(w):	“How	likely	is	w”	

• Pcontinuation(w):		“How	likely	is	w	to	appear	as	a	novel	continuation?	
• For	each	word,	count	the	number	of	bigram	types	it	completes	
• Every	bigram	type	was	a	novel	continuation	the	first	time	it	was	seen

Francisco

Kneser-Ney Smoothing I

glasses

PCONTINUATION (w)∝ {wi−1 :c(wi−1,w)> 0}

Kneser-Ney Smoothing II
• How	many	times	does	w	appear	as	a	novel	continuation:	

• Normalized	by	the	total	number	of	word	bigram	types

PCONTINUATION (w) =
{wi−1 :c(wi−1,w) > 0}

{(wj−1,wj) :c(wj−1,wj)> 0}

PCONTINUATION (w)∝ {wi−1 :c(wi−1,w)> 0}

{(wj−1,wj) :c(wj−1,wj) > 0}

Kneser-Ney Smoothing III
• Alternative	metaphor:	The	number	of	word	types	seen	to	precede	w	

• normalized	by	the	#	of	words	preceding	all	words:	

• A	frequent	word	(Francisco)	occurring	in	only	one	context	(San)	will	have	a	low	continuation	
probability

PCONTINUATION (w) =
{wi−1 :c(wi−1,w)> 0}
{w'i−1 :c(w'i−1,w')> 0}

w'
∑

| {wi−1 :c(wi−1,w) > 0} |

Kneser-Ney Smoothing IV

82

PKN (wi |wi−1) =
max(c(wi−1,wi)−d, 0)

c(wi−1)
+λ(wi−1)PCONTINUATION (wi)

λ(wi−1) =
d

c(wi−1)
{w :c(wi−1,w)> 0}

λ	is	a	normalizing	constant;	the	probability	mass	we’ve	discounted

the normalized discount
The number of word types that can follow wi-1
= # of word types we discounted
= # of times we applied normalized discount

Kneser-Ney Smoothing: Recursive formulation

83

PKN (wi |wi−n+1
i−1) = max(cKN (wi−n+1

i)−d, 0)
cKN (wi−n+1

i−1)
+λ(wi−n+1

i−1)PKN (wi |wi−n+2
i−1)

cKN (•) =
count(•) for the highest order

continuationcount(•) for lower order

!
"
#

$#

Continuation count = Number of unique single word contexts for •

Language
Modeling

Advanced:

Kneser-Ney Smoothing

