
Regular	expressions:	docs

• python:	https://docs.python.org/3/library/re.html	
• java:	http://docs.oracle.com/javase/9/docs/api/java/util/regex/

Pattern.html

https://docs.python.org/3/library/re.html
http://docs.oracle.com/javase/9/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/9/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/9/docs/api/java/util/regex/Pattern.html

Basic	Text	Processing

Word	Normalization	and	
Stemming

Klinton Bicknell

(borrowing from: Dan Jurafsky and Jim Martin)

Normalization

• Need	to	“normalize”	terms		
• Information	Retrieval:	indexed	text	&	query	terms	must	have	same	form.	

• We	want	to	match	U.S.A.	and	USA	

• We	implicitly	define	equivalence	classes	of	terms	
• e.g.,	deleting	periods	in	a	term	

• Alternative:	asymmetric	expansion:	
• Enter:	window	 Search:	window,	windows	
• Enter:	windows	Search:	Windows,	windows,	window	
• Enter:	Windows	Search:	Windows	

• Potentially	more	powerful,	but	less	efficient

Case	folding

• Applications	like	IR:	reduce	all	letters	to	lower	case	
• Since	users	tend	to	use	lower	case	
• Possible	exception:	upper	case	in	mid-sentence?	

• e.g.,	General	Motors	
• Fed	vs.	fed	
• SAIL	vs.	sail	

• For	sentiment	analysis,	MT,	Information	extraction	
• Case	is	helpful	(US	versus	us	is	important)

Lemmatization

• Reduce	inflections	or	variant	forms	to	base	form	
• am,	are,	is	→	be	
• car,	cars,	car's,	cars'	→	car	

• the	boy's	cars	are	different	colors	→	the	boy	car	be	different	color	
• Lemmatization:	have	to	find	correct	dictionary	headword	form	
• Machine	translation	

• Spanish	quiero	(‘I	want’),	quieres	(‘you	want’)	same	lemma	as	querer	‘want’

Morphology

• Morphemes:	
• The	small	meaningful	units	that	make	up	words	
• Stems:	The	core	meaning-bearing	units	
• Affixes:	Bits	and	pieces	that	adhere	to	stems	

• Often	with	grammatical	functions

Stemming

• Reduce	terms	to	their	stems	in	information	retrieval	
• Stemming	is	crude	chopping	of	affixes	

• language	dependent	
• e.g.,	automate(s),	automatic,	automation	all	reduced	to	automat.

for	example	compressed	
and	compression	are	both	
accepted	as	equivalent	to	
compress.

for	exampl	compress	and
compress	ar	both	accept
as	equival	to	compress

Porter’s	algorithm 
The	most	common	English	stemmer

			Step	1a	
sses → ss caresses → caress	
ies → i ponies → poni
ss → ss caress → caress	
s → ø									cats → cat	

		Step	1b	
(*v*)ing → ø				walking → walk	
 sing → sing	
(*v*)ed → ø				plastered → plaster	
…

			Step	2	(for	long	stems)	
ational→ ate relational→ relate	
izer→ ize digitizer → digitize	
ator→ ate operator → operate	
…

				Step	3	(for	longer	stems)	
al → ø						revival → reviv
able → ø						adjustable → adjust	
ate → ø activate → activ

…

Viewing	morphology	in	a	corpus  
Why	only	strip	–ing	if	there	is	a	vowel?

(*v*)ing → ø				walking → walk	

 sing → sing

9

Viewing	morphology	in	a	corpus  
Why	only	strip	–ing	if	there	is	a	vowel?

(*v*)ing → ø				walking → walk	
 sing → sing

10

tr -sc 'A-Za-z' '\n' < shakes.txt | grep ’ing$' | sort | uniq -c | sort –nr

tr -sc 'A-Za-z' '\n' < shakes.txt | grep '[aeiou].*ing$' | sort | uniq -c | sort –nr

548 being
541 nothing
152 something
145 coming
130 morning
122 having
120 living
117 loving
116 Being
102 going

1312 King
 548 being
 541 nothing
 388 king
 375 bring
 358 thing
 307 ring
 152 something
 145 coming
 130 morning

Dealing	with	complex	morphology	is	sometimes	necessary

• Some	languages	requires	complex	morpheme	segmentation	
• Turkish	
• Uygarlastiramadiklarimizdanmissinizcasina	
• `(behaving)	as	if	you	are	among	those	whom	we	could	not	civilize’	
• Uygar	`civilized’	+	las	`become’		

+	tir	`cause’	+	ama	`not	able’		
+	dik	`past’	+	lar	‘plural’	
+	imiz	‘p1pl’	+	dan	‘abl’		
+	mis	‘past’	+	siniz	‘2pl’	+	casina	‘as	if’	

Basic	Text	Processing

Word	Normalization	and	
Stemming

Basic	Text	Processing

Sentence	Segmentation	
and	Decision	Trees

Sentence	Segmentation

• !,	?	are	relatively	unambiguous	
• Period	“.”	is	quite	ambiguous	

• Sentence	boundary	
• Abbreviations	like	Inc.	or	Dr.	
• Numbers	like	.02%	or	4.3	

• Build	a	binary	classifier	
• Looks	at	a	word	
• Decides	EndOfSentence/NotEndOfSentence	
• Classifiers:	hand-written	rules,	regular	expressions,	or	machine-learning

Determining	if	a	word	is	end-of-sentence:	a	
Decision	Tree

More	sophisticated	decision	tree	features

• Case	of	word	with	“.”:	Upper,	Lower,	Cap,	Number	
• Case	of	word	after	“.”:	Upper,	Lower,	Cap,	Number	

• Numeric	features	
• Length	of	word	with	“.”	
• Probability(word	with	“.”	occurs	at	end-of-s)	
• Probability(word	after	“.”	occurs	at	beginning-of-s)

Implementing	Decision	Trees

• A	decision	tree	is	just	an	if-then-else	statement	
• The	interesting	research	is	choosing	the	features	
• Setting	up	the	structure	is	often	too	hard	to	do	by	hand	

• Hand-building	only	possible	for	very	simple	features,	domains	
• For	numeric	features,	it’s	too	hard	to	pick	each	threshold	

• Instead,	structure	usually	learned	by	machine	learning	from	a	training	
corpus

Decision	Trees	and	other	classifiers

• We	can	think	of	the	questions	in	a	decision	tree	
• As	features	that	could	be	exploited	by	any	kind	of	
classifier	
• Logistic	regression	
• SVM	

• Neural	Nets	
• etc.

Basic	Text	Processing

Sentence	Segmentation	
and	Decision	Trees

