Basic Text Processing

Regular Expressions

Regular expressions

- A formal language for specifying text strings
- How can we search for any of these?
 - woodchuck
 - woodchucks
 - Woodchuck
 - Woodchucks

Regular Expressions: Disjunctions

• Letters inside square brackets []

Pattern	Matches
[wW]oodchuck	Woodchuck, woodchuck
[1234567890]	Any digit

Ranges [A–Z]

Pattern	Matches	
[A -Z]	An upper case letter	<u>D</u> renched Blossoms
[a-z]	A lower case letter	<u>m</u> y beans were impatient
[0-9]	A single digit	Chapter <u>1</u> : Down the Rabbit Hole

Regular Expressions: Negation in Disjunction

- Negations [^Ss]
 - Carat means negation only when first in []

Pattern	Matches	
[^ A -Z]	Not an upper case letter	Oyfn pripetchik
[^ S s]	Neither 'S' nor 's'	<u>I</u> have no exquisite reason"
[^e^]	Neither e nor ^	Look h <u>e</u> re
a^b	The pattern a carat b	Look up <u>a^b</u> now

Regular Expressions: More Disjunction

- Woodchucks is another name for groundhog!
- The pipe | for disjunction

Pattern	Matches
groundhog woodchuck	
yours/mine	yours
a/b/c	= [abc]
[gG]roundhog [Ww]oodchuck	

Regular Expressions: ? * + .

Pattern	Matches	
colou?r	Optional provious char	<u>color</u> <u>colour</u>
00*h!	0 or more of	<u>oh!</u> <u>ooh!</u> <u>oooh!</u>
o+h!	1 or more of	<u>oh!</u> <u>ooh!</u> <u>oooh!</u>
baa+		<u>baa baaa baaaa baaaaa</u>
beg.n		<u>begin begun begun beg3n</u>

Stephen C Kleene

Kleene *, Kleene +

Regular Expressions: Anchors ^ \$

Pattern	Matches
^[A-Z]	<u>P</u> alo Alto
^[^A-Za-z]	<u>1</u> <u>"Hello"</u>
\. <i>\$</i>	The end.
. \$	The end? The end!

'the' example [in terminal]

The Example

Find me all instances of the word "the" in a text.
the

Misses capitalized examples

[tT]he

Incorrectly returns other or theology

 $[^a-zA-Z][tT]he[^a-zA-Z]$

Errors

- The process we just went through was based on fixing two kinds of errors
 - Matching strings that we should not have matched (there, then, other)
 - False positives (Type I)
 - Not matching things that we should have matched (The)
 - False negatives (Type II)

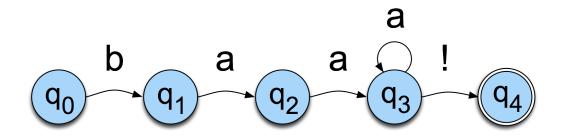
Errors cont.

- In text processing, we are always dealing with these kinds of errors.
- Reducing the error rate for an application often involves two antagonistic efforts:
 - Increasing accuracy or precision (minimizing false positives)
 - Increasing coverage or recall (minimizing false negatives).

Summary

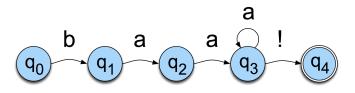
- Regular expressions play a surprisingly large role
 - Sophisticated sequences of regular expressions are often the first model for any text processing text
- For many hard tasks, we use machine learning classifiers
 - But regular expressions are used as features in the classifiers
 - Can be very useful in capturing generalizations

Basic Text Processing

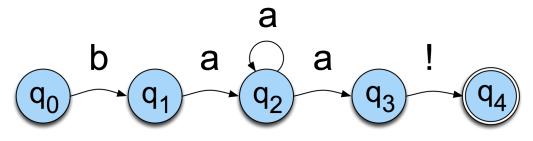

Regular Expressions

Finite State Automata

- Regular expressions can be viewed as a textual way of specifying the structure of finite-state automata.
- FSAs and their probabilistic relatives are at the core of much of what we'll be doing all quarter.
- They also capture significant aspects of what linguists say we need for morphology and parts of syntax.


FSAs as Graphs

Let's start with the sheep language /baa+!/

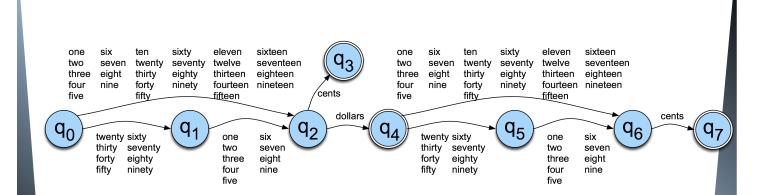

Sheep FSA

- We can say the following things about this machine
 - It has 5 states
 - b, a, and ! are in its alphabet
 - \bullet q₀ is the start state
 - \mathbf{A} q₄ is an accept state
 - It has 5 transitions

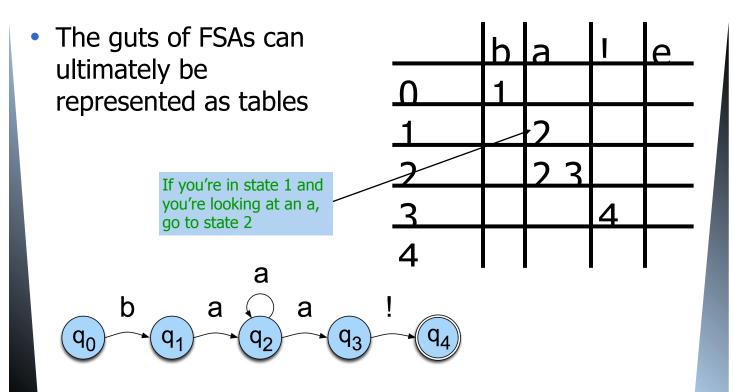
But Note

• There are other machines that correspond to this same language

More on this one later


More Formally

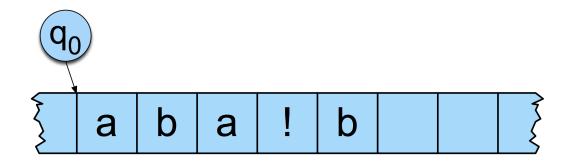
- You can specify an FSA by enumerating the following things.
 - The set of states: Q
 - A finite alphabet: Σ
 - A start state
 - A set of accept/final states
 - $\blacklozenge A$ transition function that maps $Qx\Sigma$ to Q


About Alphabets

- Don't take term alphabet word too narrowly; it just means we need a finite set of symbols in the input.
- These symbols can and will stand for bigger objects that can have internal structure.

Dollars and Cents

Yet Another View



Recognition

- Recognition is the process of determining if a string should be accepted by a machine
- Or... it's the process of determining if a string is in the language we're defining with the machine
- Or... it's the process of determining if a regular expression matches a string
 - Those all amount the same thing in the end

Recognition

• Traditionally, (Turing's notion) this process is depicted with a tape.

Recognition

- Simply a process of starting in the start state
- Examining the current input
- Consulting the table
- Going to a new state and updating the tape pointer.
- Until you run out of tape.

D-Recognize

function D-RECOGNIZE(tape, machine) returns accept or reject

index \leftarrow Beginning of tape *current-state* — Initial state of machine loop if End of input has been reached then if current-state is an accept state then return accept else return reject elsif transition-table[current-state,tape[index]] is empty then return reject else

current-state \leftarrow transition-table[current-state,tape[index]] index \leftarrow index + 1

end

Key Points

- Deterministic means that at each point in processing there is always one unique thing to do (no choices).
- D-recognize is a simple table-driven interpreter
- The algorithm is universal for all unambiguous regular languages.

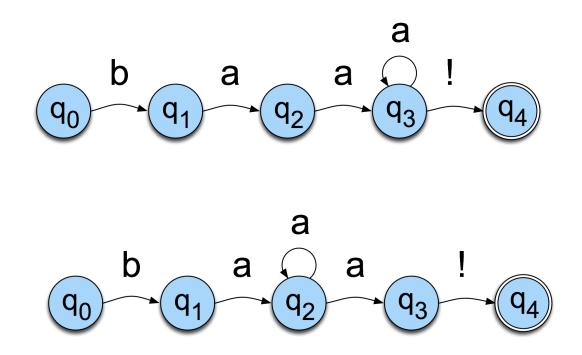
To change the machine, you simply change the table.

Key Points

- Crudely therefore... matching strings with regular expressions (ala Perl, grep, etc.) is a matter of
 - translating the regular expression into a machine (a table) and
 - passing the table and the string to an interpreter

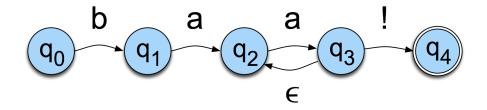
Recognition as Search

- You can view this algorithm as a trivial kind of state-space search.
- States are pairings of tape positions and state numbers.
- Operators are compiled into the table
- Goal state is a pairing with the end of tape position and a final accept state
- It is trivial because?


Generative Formalisms

- Formal Languages are sets of strings composed of symbols from a finite set of symbols.
- Finite-state automata define formal languages (without having to enumerate all the strings in the language)
- The term Generative is based on the view that you can run the machine as a generator to get strings from the language.

Generative Formalisms


- FSAs can be viewed from two perspectives:
 - Acceptors that can tell you if a string is in the language
 - Generators to produce all and only the strings in the language

Non-Determinism

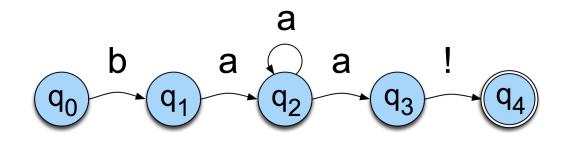
Non-Determinism cont.

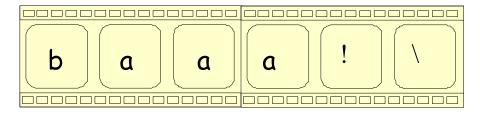
- Yet another technique
 - Epsilon transitions
 - Key point: these transitions do not examine or advance the tape during recognition

Equivalence

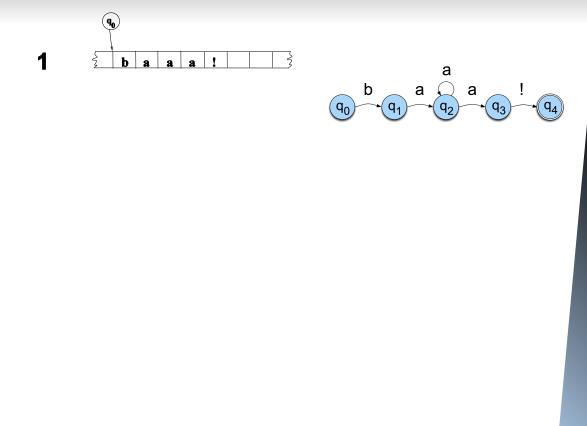
- Non-deterministic machines can be converted to deterministic ones with a fairly simple construction
- That means that they have the same power; non-deterministic machines are not more powerful than deterministic ones in terms of the languages they can accept

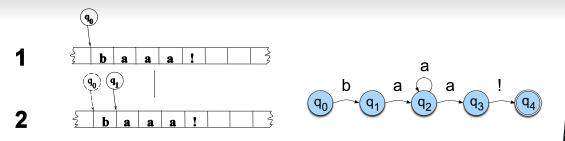
ND Recognition

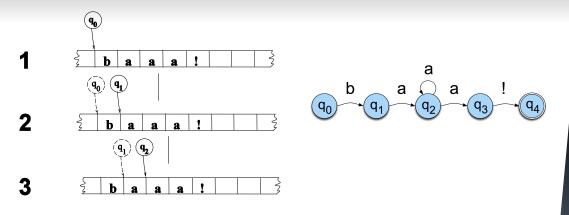

- Two basic approaches (used in all major implementations of regular expressions, see Friedl 2006)
 - 1. Either take a ND machine and convert it to a D machine and then do recognition with that.
 - 2. Or explicitly manage the process of recognition as a state-space search (leaving the machine as is).

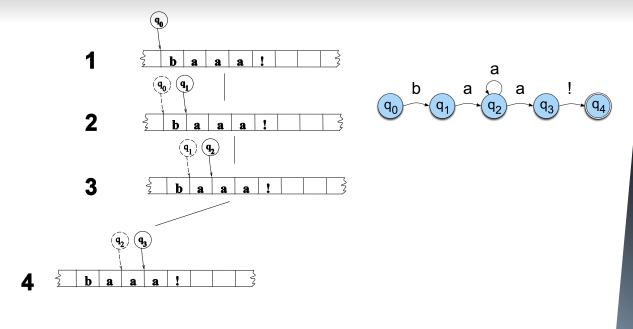

Non-Deterministic Recognition: Search

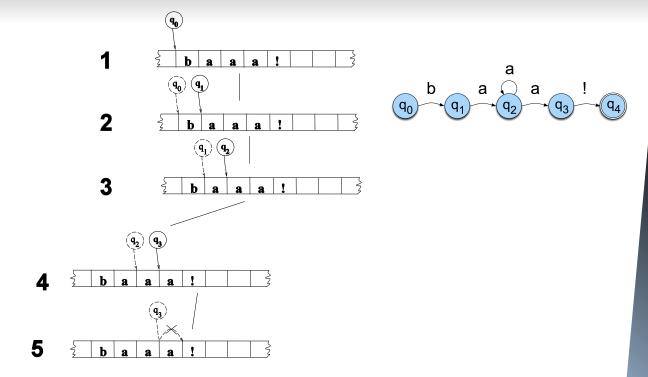
- In a ND FSA there exists at least one path through the machine for a string that is in the language defined by the machine.
- But not all paths directed through the machine for an accept string lead to an accept state.
- No paths through the machine lead to an accept state for a string not in the language.

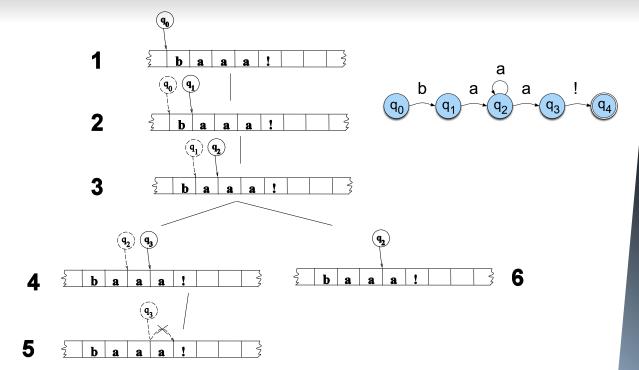

Non-Deterministic Recognition

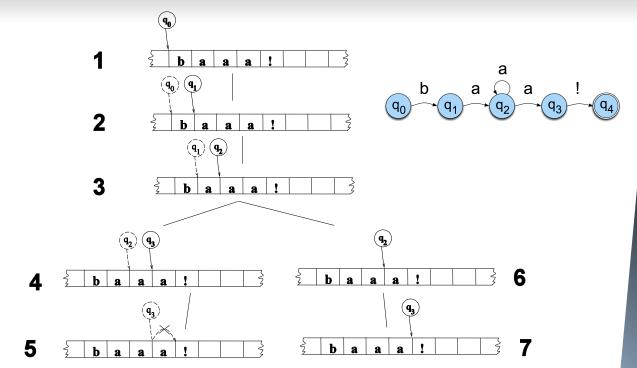

- So success in non-deterministic recognition occurs when a path is found through the machine that ends in an accept.
- Failure occurs when all of the possible paths for a given string lead to failure.

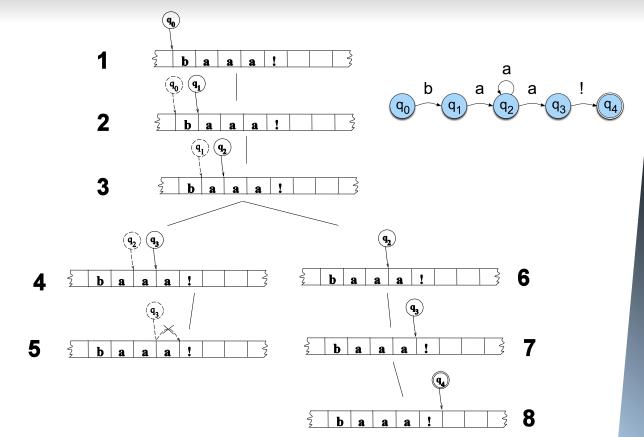





 $q_0 \qquad q_1 \qquad q_2 \qquad q_2 \qquad q_3 \qquad q_4$





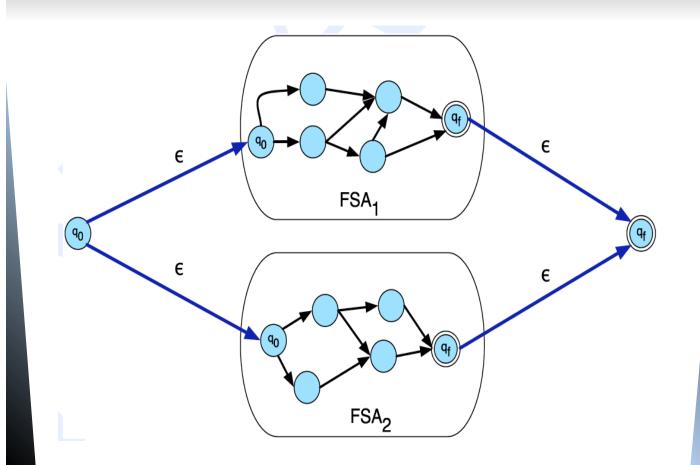


Key Points

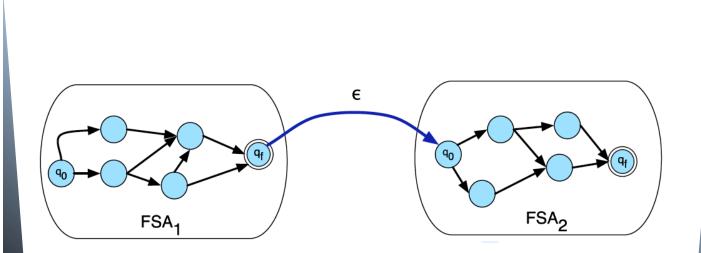
- States in the search space are pairings of tape positions and states in the machine.
- By keeping track of as yet unexplored states, a recognizer can systematically explore all the paths through the machine given an input.

Why Bother?

 Non-determinism doesn't get us more formal power and it causes headaches so why bother?


More natural (understandable) solutions

Compactness (sometimes)


Compositional Machines

- Formal languages are just sets of strings
- Therefore, we can talk about various set operations (intersection, union, concatenation)
- This turns out to be a useful exercise

Union

Concatenation

Basic Text Processing

Word tokenization

Text Normalization

- Every NLP task needs to do text normalization:
 - 1. Segmenting/tokenizing words in running text
 - 2. Normalizing word formats
 - 3. Segmenting sentences in running text

How many words?

- I do uh main- mainly business data processing
 - Fragments, filled pauses
- Seuss's cat in the hat is different from other cats!
 - Lemma: same stem, part of speech, rough word sense
 - cat and cats = same lemma
 - Wordform: the full inflected surface form
 - cat and cats = different wordforms

How many words?

they lay back on the San Francisco grass and looked at the stars and their

- **Type**: an element of the vocabulary.
- **Token**: an instance of that type in running text.
- How many?
 - 15 tokens (or 14)
 - 13 types (or 12)

How many words?

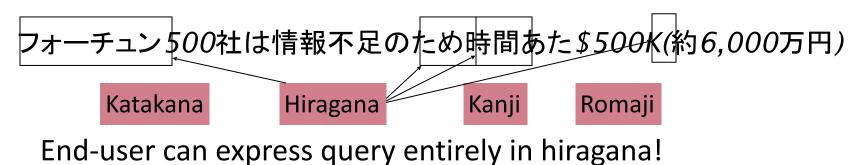
- **N** = number of tokens
- **V** = vocabulary = set of types

|V| is the size of the vocabulary

Church and Gale (1990): $|V| > O(N^{\frac{1}{2}})$

	Tokens = N	Types = V
Switchboard phone	2.4 million	20 thousand
Shakespeare	884,000	31 thousand
Google N-grams	1 trillion	13 million

Issues in Tokenization


- Finland's capital → Finland Finlands Finland's ?
- what're, I'm, isn't → What are, I am, is not
- Hewlett-Packard \rightarrow Hewlett Packard ?
- state-of-the-art \rightarrow state of the art ?
- Lowercase → lower-case lowercase lower case ?
- San Francisco → one token or two?
- m.p.h., PhD. \rightarrow ??

Tokenization: language issues

- French
 - *L'ensemble* → one token or two?
 - *L* ? *L*′ ? *Le* ?
 - Want *l'ensemble* to match with *un ensemble*
- German noun compounds are not segmented
 - Lebensversicherungsgesellschaftsangestellter
 - 'life insurance company employee'
 - German information retrieval needs **compound splitter**

Tokenization: language issues

- Chinese and Japanese no spaces between words:
 - 莎拉波娃现在居住在美国东南部的佛罗里达。
 - 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达
 - Sharapova now lives in US southeastern Florida
- Further complicated in Japanese, with multiple alphabets intermingled
 - Dates/amounts in multiple formats

Word Tokenization in Chinese

- Also called Word Segmentation
- Chinese words are composed of characters
 - Characters are generally 1 syllable and 1 morpheme.
 - Average word is 2.4 characters long.
- Standard baseline segmentation algorithm:
 - Maximum Matching (also called Greedy)

Maximum Matching Word Segmentation Algorithm

- Given a wordlist of Chinese, and a string.
- 1) Start a pointer at the beginning of the string
- 2) Find the longest word in dictionary that matches the string starting at pointer
- 3) Move the pointer over the word in string
- 4) Go to 2

Max-match segmentation illustration

- Thecatinthehat
- Thetabledownthere

the cat in the hat

the table down there

theta bled own there

• Doesn't generally work in English!

- But works astonishingly well in Chinese
 - 莎拉波娃现在居住在美国东南部的佛罗里达。
 - 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达
- Modern probabilistic segmentation algorithms even better

Basic Text Processing

Word tokenization