
Basic Text 
Processing

Regular	Expressions



Regular	expressions
• A	formal	language	for	specifying	text	strings	
• How	can	we	search	for	any	of	these?	

• woodchuck	
• woodchucks	
• Woodchuck	
• Woodchucks



Regular	Expressions:	Disjunctions

• Letters	inside	square	brackets	[]	

• Ranges	[A-Z]

  

Pattern Matches

[wW]oodchuck Woodchuck,	woodchuck
[1234567890] Any	digit

Pattern Matches

[A-Z] An	upper	case	letter Drenched Blossoms

[a-z] A	lower	case	letter my beans were impatient

[0-9] A	single	digit Chapter 1: Down the Rabbit Hole



Regular	Expressions:	Negation	in	Disjunction

• Negations [^Ss]
• Carat	means	negation	only	when	first	in	[]

Pattern Matches

[^A-Z] Not	an	upper	case	letter Oyfn pripetchik

[^Ss] Neither	‘S’	nor	‘s’ I have no exquisite reason”

[^e^] Neither	e	nor	^ Look here

a^b The	pattern	a	carat	b Look up a^b now



Regular	Expressions:	More	Disjunction

• Woodchucks	is	another	name	for	groundhog!	
• The	pipe	|	for	disjunction

Pattern Matches

groundhog|woodchuck

yours|mine yours   
mine

a|b|c =	[abc]

[gG]roundhog|[Ww]oodchuck



Regular	Expressions:	?				*  +  .

Stephen	C	Kleene

Pattern Matches

colou?r Optional	
previous	char

color    colour

oo*h! 0	or	more	of	
previous	char

oh! ooh!  oooh! ooooh!

o+h! 1	or	more	of	
previous	char

oh! ooh!  oooh! ooooh!

baa+ baa baaa baaaa baaaaa

beg.n begin begun begun beg3n Kleene	*,			Kleene	+			



Regular	Expressions:	Anchors		^			$

Pattern Matches

^[A-Z] Palo Alto

^[^A-Za-z] 1    “Hello”

\.$ The end.

.$ The end?  The end!



'the'	example	[in	terminal]



The	Example

• Find	me	all	instances	of	the	word	“the”	in	a	text.	
the

																																																Misses	capitalized	examples	
[tT]he

																																																Incorrectly	returns	other	or	theology	
[^a-zA-Z][tT]he[^a-zA-Z]

																																										



Errors

• The	process	we	just	went	through	was	based	on	fixing	
two	kinds	of	errors	
• Matching	strings	that	we	should	not	have	matched	(there,	
then,	other)	
• False	positives	(Type	I)	

• Not	matching	things	that	we	should	have	matched	(The)	
• False	negatives	(Type	II)



Errors	cont.

• In	text	processing,	we	are	always	dealing	with	these	
kinds	of	errors.	

• Reducing	the	error	rate	for	an	application	often	involves	
two	antagonistic	efforts:		
• Increasing	accuracy	or	precision	(minimizing	false	positives)	
• Increasing	coverage	or	recall	(minimizing	false	negatives).



Summary

• Regular	expressions	play	a	surprisingly	large	role	
• Sophisticated	sequences	of	regular	expressions	are	often	the	first	model	
for	any	text	processing	text	

• For	many	hard	tasks,	we	use	machine	learning	classifiers	
• But	regular	expressions	are	used	as	features	in	the	classifiers	
• Can	be	very	useful	in	capturing	generalizations

12



Basic Text 
Processing

Regular	Expressions



14

Finite State Automata

• Regular expressions can be viewed as a 
textual way of specifying the structure of 
finite-state automata. 

• FSAs and their probabilistic relatives are at 
the core of much of what we’ll be doing all 
quarter. 

• They also capture significant aspects of 
what linguists say we need for morphology 
and parts of syntax.



15

FSAs as Graphs

• Let’s start with the sheep language 
⬥/baa+!/



16

Sheep FSA

• We can say the following things about this 
machine 

⬥ It has 5 states 
⬥ b, a, and ! are in its alphabet 
⬥ q0 is the start state 

⬥ q4 is an accept state 

⬥ It has 5 transitions



17

But Note

• There are other machines that 
correspond to this same language 

• More on this one later



18

More Formally

• You can specify an FSA by enumerating the 
following things. 

⬥The set of states: Q 
⬥A finite alphabet: Σ 
⬥A start state 
⬥A set of accept/final states 
⬥A transition function that maps QxΣ to Q



19

About Alphabets

• Don’t take term alphabet word too 
narrowly; it just means we need a finite 
set of symbols in the input. 

• These symbols can and will stand for 
bigger objects that can have internal 
structure.



20

Dollars and Cents



21

Yet Another View

• The guts of FSAs can  
ultimately be 
represented as tables

b a ! e
0 1
1 2
2 2,3
3 4
4

If you’re in state 1 and 
you’re looking at an a, 
go to state 2



22

Recognition

• Recognition is the process of determining if 
a string should be accepted by a machine 

• Or… it’s the process of determining if a 
string is in the language we’re defining with 
the machine 

• Or… it’s the process of determining if a 
regular expression matches a string 

• Those all amount the same thing in the end



23

Recognition
• Traditionally, (Turing’s notion) this process is 

depicted with a tape.



24

Recognition

• Simply a process of starting in the start 
state 

• Examining the current input 
• Consulting the table 
• Going to a new state and updating the 

tape pointer. 
• Until you run out of tape.



25

D-Recognize



26

Key Points

• Deterministic means that at each point in 
processing there is always one unique 
thing to do (no choices). 

• D-recognize is a simple table-driven 
interpreter 

• The algorithm is universal for all 
unambiguous regular languages. 

⬥To change the machine, you simply change the 
table.



27

Key Points

• Crudely therefore… matching strings with 
regular expressions (ala Perl, grep, etc.) is a 
matter of  

⬥translating the regular expression into a machine (a 
table) and  

⬥passing the table and the string to an interpreter



28

Recognition as Search

• You can view this algorithm as a trivial kind of 
state-space search. 

• States are pairings of tape positions and state 
numbers. 

• Operators are compiled into the table 
• Goal state is a pairing with the end of tape 

position and a final accept state 
• It is trivial because?



29

Generative Formalisms

• Formal Languages are sets of strings 
composed of symbols from a finite set of 
symbols. 

• Finite-state automata define formal 
languages (without having to enumerate all 
the strings in the language) 

• The term Generative is based on the view 
that you can run the machine as a 
generator to get strings from the language.



30

Generative Formalisms

• FSAs can be viewed from two perspectives: 
⬥Acceptors that can tell you if a string is in the 

language 
⬥Generators to produce all and only the strings in 

the language



31

Non-Determinism



32

Non-Determinism cont.

• Yet another technique 
⬥Epsilon transitions 
⬥Key point: these transitions do not examine or 

advance the tape during recognition



33

Equivalence

• Non-deterministic machines can be 
converted to deterministic ones with a 
fairly simple construction 

• That means that they have the same 
power; non-deterministic machines are 
not more powerful than deterministic 
ones in terms of the languages they can 
accept



34

ND Recognition

• Two basic approaches (used in all major 
implementations of regular expressions, 
see Friedl 2006) 
1. Either take a ND machine and convert it to a D 

machine and then do recognition with that. 
2. Or explicitly manage the process of 

recognition as a state-space search (leaving 
the machine as is).



35

Non-Deterministic Recognition: 
Search

• In a ND FSA there exists at least one path through 
the machine for a string that is in the language 
defined by the machine. 

• But not all paths directed through the machine for 
an accept string lead to an accept state. 

• No paths through the machine lead to an accept 
state for a string not in the language.



36

Non-Deterministic Recognition

• So success in non-deterministic recognition 
occurs when a path is found through the 
machine that ends in an accept. 

• Failure occurs when all of the possible 
paths for a given string lead to failure.



37

Example

b a a a ! \

q0 q1 q2 q2 q3 q4



38

Example



39

Example



40

Example



41

Example



42

Example



43

Example



44

Example



45

Example



46

Key Points

• States in the search space are pairings of 
tape positions and states in the machine. 

• By keeping track of as yet unexplored 
states, a recognizer can systematically 
explore all the paths through the machine 
given an input.



47

Why Bother?

• Non-determinism doesn’t get us more 
formal power and it causes headaches so 
why bother? 

⬥More natural (understandable) solutions 
⬥Compactness (sometimes)



48

Compositional Machines

• Formal languages are just sets of strings 
• Therefore, we can talk about various set 

operations (intersection, union, 
concatenation) 

• This turns out to be a useful exercise



49

Union



50

Concatenation



Basic	Text	
Processing

Word	tokenization



Text	Normalization

• Every	NLP	task	needs	to	do	text	
normalization:		
1. Segmenting/tokenizing	words	in	running	text	
2. Normalizing	word	formats	
3. Segmenting	sentences	in	running	text



How	many	words?

• I	do	uh	main-	mainly	business	data	processing	
• Fragments,	filled	pauses	

• Seuss’s	cat	in	the	hat	is	different	from	other	cats!		
• Lemma:	same	stem,	part	of	speech,	rough	word	sense	
• cat	and	cats	=	same	lemma	

• Wordform:	the	full	inflected	surface	form	
• cat	and	cats	=	different	wordforms



How	many	words?

they	lay	back	on	the	San	Francisco	grass	and	looked	at	the	stars	and	their	

• Type:	an	element	of	the	vocabulary.	
• Token:	an	instance	of	that	type	in	running	text.	
• How	many?	

• 15	tokens	(or	14)	
• 13	types	(or	12)



How	many	words?

N	=	number	of	tokens	
V	=	vocabulary	=	set	of	types	

|V|	is	the	size	of	the	vocabulary

Tokens	=	N Types	=	|V|

Switchboard	phone	
conversations

2.4	million 20	thousand

Shakespeare 884,000 31	thousand

Google	N-grams 1	trillion 13	million

Church	and	Gale	(1990):	|V|	>	O(N½) 



Issues	in	Tokenization

• Finland’s capital    →  Finland Finlands Finland’s 	?	
• what’re, I’m, isn’t  →  What are, I am, is not

• Hewlett-Packard      →  Hewlett Packard ?
• state-of-the-art     →  state of the art ?	
• Lowercase →  lower-case lowercase lower case ?	
• San Francisco →  one	token	or	two?	
• m.p.h.,	PhD.	 	 →  ??



Tokenization:	language	issues

• French	
• L'ensemble	→ one	token	or	two?	
• L	?	L’	?	Le	?	
• Want	l’ensemble	to	match	with	un	ensemble	

• German	noun	compounds	are	not	segmented	
• Lebensversicherungsgesellschaftsangestellter	
• ‘life	insurance	company	employee’	
• German	information	retrieval	needs	compound	splitter



Tokenization:	language	issues
• Chinese	and	Japanese	no	spaces	between	words:	

• 莎拉波娃现在居住在美国东南部的佛罗里达。 
• 莎拉波娃  现在   居住  在    美国   东南部     的    佛罗里达 

• Sharapova	now					lives	in							US							southeastern					Florida	

• Further	complicated	in	Japanese,	with	multiple	alphabets	
intermingled	
• Dates/amounts	in	multiple	formats

フォーチュン500社は情報不足のため時間あた$500K(約6,000万円)

Katakana Hiragana Kanji Romaji

End-user	can	express	query	entirely	in	hiragana!



Word	Tokenization	in	Chinese

• Also	called	Word	Segmentation	
• Chinese	words	are	composed	of	characters	

• Characters	are	generally	1	syllable	and	1	morpheme.	
• Average	word	is	2.4	characters	long.	

• Standard	baseline	segmentation	algorithm:		
• Maximum	Matching		(also	called	Greedy)



Maximum	Matching  
Word	Segmentation	Algorithm

• Given	a	wordlist	of	Chinese,	and	a	string.	
1) Start	a	pointer	at	the	beginning	of	the	string	
2) Find	the	longest	word	in	dictionary	that	matches	the	string	

starting	at	pointer	
3) Move	the	pointer	over	the	word	in	string	
4) Go	to	2



Max-match	segmentation	illustration

• Thecatinthehat	
• Thetabledownthere	

• Doesn’t	generally	work	in	English!	

• But	works	astonishingly	well	in	Chinese	
• 莎拉波娃现在居住在美国东南部的佛罗里达。	

• 莎拉波娃		现在			居住			在		美国			东南部					的		佛罗里达 

• Modern	probabilistic	segmentation	algorithms	even	better

the table down there

the cat in the hat

theta bled own there



Basic	Text	
Processing

Word	tokenization


