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Outline for ASR

▪ ASR Architecture 
▪ The Noisy Channel Model 

▪ Five easy pieces of an ASR system 
1)Language Model 
2) Lexicon/Pronunciation Model (HMM) 
3)Feature Extraction 
4)Acoustic Model 
5)Decoder 

▪ Training 
▪ Evaluation
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Speech Recognition

▪ Applications of Speech Recognition (ASR) 
▪ Dictation 
▪ Telephone-based Information (directions, air 

travel, banking, etc)   
▪ Hands-free (in car) 
▪ Speaker Identification 
▪ Language Identification 
▪ Second language ('L2') (accent reduction)  
▪ Audio archive searching
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LVCSR

▪ Large Vocabulary Continuous Speech 
Recognition 

▪ ~20,000-64,000 words 
▪ Speaker independent (vs. speaker-

dependent) 
▪ Continuous speech (vs isolated-word)
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Current error rates

Task Vocabulary Error Rate%
Digits 11 0.5
WSJ read speech 5K 3
WSJ read speech 20K 3

Broadcast news 64,000+ 10
Conversational Telephone 64,000+ 20

Ballpark numbers; exact numbers depend very much on the specific corpus
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HSR versus ASR

▪ Conclusions: 
▪Machines about 5 times worse than humans 
▪Gap increases with noisy speech 
▪These numbers are rough, take with grain of salt

Task Vocab ASR Hum SR

Continuous digits 11 .5 .009
WSJ 1995 clean 5K 3 0.9
WSJ 1995 w/noise 5K 9 1.1
SWBD 2004 65K 20 4
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LVCSR Design Intuition

• Build a statistical model of the speech-to-
words process 

• Collect lots and lots of speech, and 
transcribe all the words. 

• Train the model on the labeled speech 
• Paradigm: Supervised Machine Learning + 

Search
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Speech Recognition Architecture
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The Noisy Channel Model

▪ Search through space of all possible sentences. 
▪ Pick the one that is most probable given the 

waveform.
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The Noisy Channel Model (II)

▪ What is the most likely sentence out of all 
sentences in the language L given some 
acoustic input O? 

▪ Treat acoustic input O as sequence of 
individual observations  
▪ O = o1,o2,o3,…,ot 

▪ Define a sentence as a sequence of words: 
▪ W = w1,w2,w3,…,wn 
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Noisy Channel Model (III)

▪ Probabilistic implication: Pick the highest prob S = 
W: 

▪ We can use Bayes rule to rewrite this: 

▪ Since denominator is the same for each candidate 
sentence W, we can ignore it for the argmax:

€ 

ˆ W = argmax
W ∈L

P(W | O)

€ 

ˆ W = argmax
W ∈L

P(O |W )P(W )€ 

ˆ W = argmax
W ∈L

P(O |W )P(W )
P(O)
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Noisy channel model

€ 

ˆ W = argmax
W ∈L

P(O |W )P(W )

likelihood prior
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The noisy channel model

▪ Ignoring the denominator leaves us with 
two factors: P(Source) and P(Signal|
Source)
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Speech Architecture meets Noisy 
Channel
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Architecture: Five easy pieces

▪ HMMs, Lexicons, and Pronunciation 
▪ Feature extraction 
▪ Acoustic Modeling 
▪ Decoding 
▪ Language Modeling (seen this already)
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Lexicon

▪ A list of words 
▪ Each one with a pronunciation in terms of 

phones 
▪ We get these from an on-line 

pronunciation dictionary 
▪ CMU dictionary: 127K words 
▪ http://www.speech.cs.cmu.edu/cgi-bin/

cmudict  
▪ We’ll represent the lexicon as an HMM
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HMMs for speech: the word “six”
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Phones are not homogeneous!

Time (s)
0.48152 0.937203

0

5000

ay k
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Each phone has 3 subphones
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Resulting HMM word model for “six” 
with their subphones
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HMM for the digit recognition task
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Detecting Phones

▪ Two stages 
▪ Feature extraction 
▪ Transforming raw acoustics into features 

▪ Computing phone likelihoods  
▪ Using GMM classifier
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Discrete Representation of 
Signal

▪ Represent continuous signal into discrete form.

Thanks to Bryan Pellom for this slide 23



Digitizing the signal (A-D)

Sampling:  
measuring amplitude of signal at time t 
16,000 Hz (samples/sec) Microphone 
(“Wideband”): 
8,000 Hz (samples/sec) Telephone 
Why? 
– Need at least 2 samples per cycle 
– max measurable frequency is half sampling rate 
– Human speech < 10,000 Hz,  so need max 20K 
– Telephone filtered at 4K, so 8K is enough
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MFCC: Mel-Frequency Cepstral 
Coefficients
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Pre-Emphasis

▪ Pre-emphasis: boosting the energy in the 
high frequencies 

▪ Q: Why do this? 
▪ A: The spectrum for voiced segments has more 

energy at lower frequencies than higher 
frequencies. 
▪ This is called spectral tilt 
▪ Spectral tilt is caused by the nature of the glottal pulse 

▪ Boosting high-frequency energy gives more info 
to Acoustic Model 
▪ Improves phone recognition performance
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Example of pre-emphasis

▪ Before and after pre-emphasis 
▪ Spectral slice from the vowel [aa]
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MFCC process: windowing
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Windowing

▪ Why divide speech signal into successive 
overlapping frames? 
▪ Speech is not a stationary signal; we want information 

about a small enough region that the spectral 
information is a useful cue. 

▪ Frames 
▪ Frame size: typically, 10-25ms 
▪ Frame shift: the length of time between successive 

frames, typically, 5-10ms
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MFCC process: windowing
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Common window shapes

▪ Rectangular window: 
 
 

▪ Hamming window  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Discrete Fourier 
Transform

▪ Input: 
▪ Windowed signal x[n]…x[m] 

▪ Output: 
▪ For each of N discrete frequency bands 
▪ A complex number X[k] representing magnitude and phase of that 

frequency component in the original signal 
▪ Discrete Fourier Transform (DFT) 
 
 

▪ Standard algorithm for computing DFT:  
▪ Fast Fourier Transform (FFT) with complexity N*log(N) 
▪ In general, choose N=512 or 1024
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Discrete Fourier Transform computing 
a spectrum

▪ A 25 ms Hamming-windowed signal from 
[iy] 
▪ And its spectrum as computed by DFT (plus 

other smoothing)
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Mel-scale
▪ Human hearing is not equally sensitive to all 

frequency bands 
▪ Less sensitive at higher frequencies, roughly > 

1000 Hz 
▪ I.e. human perception of frequency is non-linear:
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Mel-scale

▪ A mel is a unit of pitch 
Pairs of sounds perceptually equidistant in pitch 
Are separated by an equal number of mels 

▪ Mel-scale is approximately linear below 1 
kHz and logarithmic above 1 kHz  

▪ Definition:

35



The Cepstrum

▪ One way to think about this 
▪ Separating the source and filter 
▪ Speech waveform is created by 
▪ A glottal source waveform 
▪ Passes through a vocal tract which because of its 

shape has a particular filtering characteristic  

▪ Articulatory facts: 
▪ The vocal cord vibrations create harmonics 
▪ The mouth is an amplifier 
▪ Depending on shape of oral cavity, some 

harmonics are amplified more than others
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Vocal Fold Vibration

UCLA Phonetics Lab Demo
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George Miller figure
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We care about the filter not the source

▪ Most characteristics of the source 
▪ F0 
▪ Details of glottal pulse 

▪ Don’t matter for phone detection 
▪ What we care about is the filter 
▪ The exact position of the articulators in the 

oral tract 

▪ So we want a way to separate these 
▪ And use only the filter function
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The Cepstrum

▪ The spectrum of the log of the spectrum

Spectrum Log spectrum

Spectrum of log spectrum
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Thinking about the Cepstrum

Pictures from John Coleman  (2005) 41



Mel Frequency cepstrum

▪ The cepstrum requires Fourier analysis 
▪ But we’re going from frequency space back to time 
▪ So we  actually apply inverse DFT  
 
 
 

▪ Details for signal processing gurus: Since the log power 
spectrum is real and symmetric, inverse DFT reduces to a 
Discrete Cosine Transform (DCT)
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Another advantage of the 
Cepstrum

▪ DCT produces highly uncorrelated features  

▪ We’ll see when we get to acoustic modeling that 
these will be much easier to model than the 
spectrum 
▪ Simply modelled by linear combinations of Gaussian 

density functions with diagonal covariance matrices 

▪ In general we’ll just use the first 12 cepstral 
coefficients (we don’t want the later ones which 
have e.g. the F0 spike)
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Dynamic Cepstral 
Coefficient

▪ The cepstral coefficients do not capture energy 

▪ So we add an energy feature 

▪ Also, we know that speech signal is not constant (slope of 
formants, change from stop burst to release). 

▪ So we want to add the changes in features (the slopes). 

▪ We call these delta features 

▪ We also add double-delta acceleration features
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Typical MFCC features

▪ Window size: 25ms 
▪ Window shift: 10ms 
▪ Pre-emphasis coefficient: 0.97 
▪ MFCC: 
▪ 12 MFCC (mel frequency cepstral coefficients) 
▪ 1 energy feature 
▪ 12 delta MFCC features  
▪ 12 double-delta MFCC features 
▪ 1 delta energy feature 
▪ 1 double-delta energy feature 

▪ Total 39-dimensional features
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Why is MFCC so popular?

▪ Efficient to compute  

▪ Incorporates a perceptual Mel frequency 
scale  

▪ Separates the source and filter  

▪ IDFT(DCT) decorrelates the features 
▪ Improves diagonal assumption in HMM 

modeling
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Coming up: Acoustic Modeling  
(= Phone detection)

▪ Given a 39-dimensional vector 
corresponding to the observation of one 
frame oi 

▪ And given a phone q we want to detect 
▪ Compute p(oi|q) 

▪ Most popular method: 
▪ GMM (Gaussian mixture models) 

▪ Other methods 
▪ Neural nets, CRFs, SVM, etc
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Summary

▪ ASR Architecture 
▪ The Noisy Channel Model 

▪ Five easy pieces of an ASR system 
1)Language Model 
2) Lexicon/Pronunciation Model (HMM) 
3)Feature Extraction 
4)Acoustic Model 
5)Decoder 

▪ Training 
▪ Evaluation
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