Parsing

borrowing from
Daniel Jurafsky and James Martin

= A derivation is a
sequence of rules
applied to a string
that accounts for
that string

= Covers all the
elements in the
string

= Covers only the

elements in the
string

S

RN

NP

Pro

I

VP

RN

Verb NP

|
prefer Det

Nom

| TN

a Nom

Noun

Morning

Noun

|
flight

EU Erammar

Grammar Rules Examples
S — NPVP I + want a morning flight
NP Pronoun I

g

| Proper-Noun Los Angeles
| Det Nominal a + flight
_—
|

Nominal Nominal Noun morning + flight
Noun flights
VP — Verb do
Verb NP want + a flight
Verb NP PP leave + Boston + 1n the morning
Verb PP leaving + on Thursday

PP — Preposition NP from + Los Angeles

» Parsing with CFGs
= Bottom-up, top-down
= Ambiguity
= CKY parsing

*mg

» Parsing with CFGs refers to the task of
assigning proper trees to input strings

= Proper here means a tree that covers all
and only the elements of the input and has
an S at the top

» [t doesn’t actually mean that the system
can select the correct tree from among all
the possible trees

~ parsing

= As with everything of interest, parsing
involves a search which involves the
making of choices

= We'll start with some basic (meaning bad)
methods before moving on to the one or
two that you need to know

!OI‘ IuOW

= Assume...
= You have all the words already in some buffer
= The input isn’t POS tagged
= We won't worry about morphological analysis
= All the words are known

= These are all problematic in various ways, and
would have to be addressed in real
applications.

"~ Top-Down Search

» Since we're trying to find trees rooted with
an S (Sentences), why not start with the
rules that give us an S.

= Then we can work our way down from
there to the words.

"~ Bottom-Up Parsing

= Of course, we also want trees that cover
the input words. So we might also start
with trees that link up with the words in
the right way.

= Then work your way up from there to
larger and larger trees.

10

Book that flight

Verb Det Noun

Book that flight

Nomuinal

Verb Det Noun

Book that flight

NP

Nominal

Verb Det Noun

Book that flight

VP

NP
Non‘linal

Verb Det Noun

Book that flight

Top-Down ana Bottom-Up

= Top-down
= Only searches for trees that can be answers
(i.e. S's)
= But also suggests trees that are not consistent
with any of the words

= Bottom-up
= Only forms trees consistent with the words
= But suggests trees that make no sense
globally

16

Eontrol

= Of course, in both cases we left out how to
keep track of the search space and how to

make choices
= Which node to try to expand next
= Which grammar rule to use to expand a node

= One approach is called backtracking.
= Make a choice, if it works out then fine
= If not then back up and make a different
choice

17

= Even with the best filtering, backtracking
methods are doomed because of two

inter-related problems
= Ambiguity
= Shared subproblems

18

S

TN

/S\

NP VP
| NP VP
Pronoun ;.7 NP |
| | Pronoun
I /\ | VP PP
shot Det Nominal I s T~
| /\ Verb NP 1N My pajamas
4 Nominal PP | S
| T~ shot Det Nominal
Noun j ' | |
| In my pajamas . Noun
elephant |

elephant

19

are U ropiems

= No matter what kind of search (top-down

or bottom-up or mixed) that we choose.

= We don’t want to redo work we've already
done.

= Unfortunately, naive backtracking will lead to
duplicated work.

20

= Consider
= A flight from Indianapolis to Houston on TWA
‘ NP
D/\le
|
) Nomi{\PP
—_
on TWA
Nominal PP
—_
Nomsaal Bp to Houston
| /\

Noun from Indianapolis

flight

21

are U ropiems

= Assume a top-down parse making choices
among the various Nominal rules.

= In particular, between these two
= Nominal -> Noun
= Nominal -> Nominal PP

» Statically choosing the rules in this order
leads to the following bad results...

22

N
Det Nominal

23

NP

N

Det Nominal

|
! /\
Nominal PP
| /\

Noun from Indianapolis...

|
flight

24

NP f

Det Nominad
| /\
a
Nominal
/\ /\

Nominal PP to Houston...

Noun from Indianapolis

flight

25

NP
Det Nominal
| /\
a
Nominal PP
—_
on TWA
Nominal PP
/\
Normaal Pp to Houston

| /\

Noun from Indianapolis

flight

26

Eynamllc Brogrammllng

= DP search methods fill tables with partial results

and thereby
= Avoid doing avoidable repeated work
= Solve exponential problems in polynomial time (well,
no not really)
= Efficiently store ambiguous structures with shared

sub-parts.
= We'll cover two approaches that roughly
correspond to top-down and bottom-up

approaches.
= CKY
= Earley

27

!E! Earsmg

= First we'll limit our grammar to epsilon-
free, binary rules (more later)

= Consider the rule A — BC

= If there is an A somewhere in the input
then there must be a B followed by a C in
the input.

= If the A spans from i to j in the input then

there must be some k st. i<k<]j
= Je. The B splits from the C someplace.

28

Problem

» What if your grammar isn’t binary?
= As in the case of the TreeBank grammar?
= Convert it to binary... any arbitrary CFG
can be rewritten into Chomsky-Normal
Form automatically.
= What does this mean?
= The resulting grammar accepts (and rejects) the

same set of strings as the original grammar.
= But the resulting derivations (trees) are different.

29

= More specifically, we want our rules to be
of the form
A— BC
Or
A— w

That is, rules can expand to either 2 non-
terminals or to a single terminal.

30

Binarization Intuition

» Eliminate chains of unit productions.

» Introduce new intermediate non-terminals
into the grammar that distribute rules with
length > 2 over several rules.
=So0...5S — AB Cturns into
S - X Cand
X—-AB
Where X is a symbol that doesn’t occur

anywhere else in the the grammar.

31

!ample E! !rammar

Grammar Lexicon
S — NPVP Det — that | this | a
S — Aux NP VP Noun — book | flight | meal | money
S — VP Verb — Dbook | include | prefer

NP — Pronoun

NP — Proper-Noiin
NP — Det Nominal
Nominal — Noun
Nominal — Nominal Noun
Nominal — Nominal PP
VP — Verb

VP — Verb NP

VP — Verb NP PP

VP — Verb PP

VP — VP PP

PP — Preposition NP

Pronoun — I| she | me

Proper-Noun — Houston | NWA

Aux — does

Preposition — from | to | on | near | through

32

onversion

2 Grammar 2 in CNF
S — NPVP S — NPVP
S — Aux NP VP S — X1VP
X1 — Aux NP
S — VP S — Dbook | include | prefer
S — Verb NP
S — X2 PP
S — Verb PP
S — VPPP

NP — Pronoun

NP — Proper-Noun

NP — Det Nominal
Nominal — Noun
Nominal — Nominal Noun
Nominal — Nominal PP
VP — Verb

VP — Verb NP

VP — Verb NP PP

VP — Verb PP
VP — VP PP
PP — Preposition NP

NP — I| she| me

NP — TWA | Houston

NP — Det Nominal

Nominal — book | flight | meal | money
Nominal — Nominal Noun
Nominal — Nominal PP

VP — book | include | prefer
VP — Verb NP

VP — X2 PP

X2 — Verb NP

VP — Verb PP

VP — VP PP

PP — Preposition NP

33

*

= S0 let’s build a table so that an A spanning
from i to j in the input is placed in cell [i,j]
in the table.
= SO0 a hon-terminal spanning an entire
string will sit in cell [0, n]
= Hopefully an S
= If we build the table bottom-up, we’ll know

that the parts of the A must go from i to k
and from k to j, for some K.

34

- eky

= Meaning that for a rule like A — B C we

should look for a B in

[i,k] and a Cin [k,j].

= In other words, if we think there might be
an A spanning i,j in the input... AND

A—BCisaruleint

= There must be a B in
for some i<k<j

ne grammar THEN

i,k] and a Cin [k,j]

35

- eky

= So to fill the table loop over the cell[i,j]

values in some systematic way
= What constraint should we put on that
systematic search?

= For each cell, loop over the appropriate k
values to search for things to add.

36

"~ CKY Algorithm

function CKY-PARSE(words, grammar) returns table

for j<— from 1 to LENGTH(words) do
table[j—1,j1—{A| A — words[j] € grammar}
for i — from j — 2 downto O do
for k—i+1to j—1do
tableli j] < table[i j] U
{A|A — BC € grammar,
B € tableli, k],
C € tablelk,j|}

37

= Is that really a parser?

38

Hote

= We arranged the loops to fill the table a
column at a time, from left to right, bottom

to top.
= This assures us that whenever we're filling a
cell, the parts needed to fill it are already in
the table (to the left and below)
= [t's somewhat natural in that it processes the

input a left to right a word at a time
= Known as online

39

X

Book the flight through Houston
S, VP, Verb S,VP,X2 S,VP.X2
Nominal,
Noun
[0,1] [0,2] [0,3] [0,4] [0,9]
Det NP NP
[1,2] [1,3] [1.4] [1,5]
Nominal, Nominal
Noun
2,3 [2,4] [2,5]
Prep PP
[3.4] [3,9]
NP,
Proper-
Noun
|4,5|

40

Book the flight through Houston
S, VP, Verb, S,VP, X2
Nominal,
Noun
[0,1] [0,2] [0,3] [0,4] [0,9]
Det NP
1,2 [1,3] [1,4] [1,9]
Nominal, Nominal
Noun
2,3 [2,4] [2,9]
Prep
[3.4] [3,9]
1 NP,
Proper-
Noun
|4,5|

41

Book the flight through Houston
S, VP, Verb, S,VP,X2
Nominal,
Noun
[0,1] [0,2] [0,3] [0,4] [0,9]
Det NP NP
[1,2 [1,3] [1.4] [1,5]
Nominal,
Noun
|2,3| [2,4] [2,5]
Prep «<—— PP
[3,4] [3,511
NP,
Proper-
Noun
4,5

42

Book the flight through Houston
S, VP, Verb, S,VP,X2
Nominal,
Noun
[0,1] [0,2] [0,3] [0,4] [0,5]
Det NP NP
[1,2] [1,3] [1,4] [1,5]
Nominal,< Nominal
Noun
[2,3] [2,4] [2,9]
Prep PP
[3,4] [3,9]
NP,
Proper-
Noun

|4,5|

43

Book the flight through Houston
S, VP, Verb, S,VP, X2
Nominal,
Noun
[0,1] [0,2] [0,3] [0,4] [0,5]
Det <« NP NP
[1,2] [1,3] [1.4] [1{5]
Nominal, Nominal
Noun
2,3 [2,4] [2,5]
Prep PP
[3,4] [3,5]
—NP,
Proper-
Noun
|4,5|

44

Book the flight through Houston
S, VP, Verbje S4.VP, X2
Nominal, S,
Noun VP < S?' VP
X2 <« S3
[0,1] [0,2] [0,3] [0,4]
Det NP NP
[1,2] [1,3] [1,4] [1,5]
Nominal, Nomina
Noun
2,3 [2,4] [2,5]
% Prep tpv
[3.4] [3,9]
1 NP,
Proper-
Noun
[4,5!

45

e
CKY Notes

= Since it's bottom up, CKY populates the

table with a lot of phantom constituents.

= Segments that by themselves are constituents
but cannot really occur in the context in which
they are being suggested.

= To avoid this we can switch to a top-down
control strategy

= Or we can add some kind of filtering that
blocks constituents where they can not
happen in a final analysis.

46

W

= Allows arbitrary CFGs
= Top-down control

= Fills a table in a single sweep over the
iInput
= Table is length N+1; N is number of words

= Table entries represent
= Completed constituents and their locations
= [n-progress constituents
= Predicted constituents

47

» The table-entries are called states and are
represented with dotted-rules.

A VP is predicted

S—-VP
NP — Det - Nominal
VP — V NP -

An NP is in

Drogress

A VP has been found

48

= S— e VP[0,0]

= NP — Det ¢ NOminal
[1,2]

= VP —= VNP e [0,3]

A VP is predicted at the start
of the sentence

An NP is in progress; the Det
goes from 1 to 2

A VP has been found starting
at 0 and ending at 3

49

*ar ey

= As with most dynamic programming
approaches, the answer is found by
looking in the table in the right place.

= In this case, there should be an S state in
the final column that spans from 0 to N

and is complete. That is,
= S— e [O,N]

» If that's the case you're done.

50

!a rIey

= So sweep through the table from 0 to N...

= New predicted states are created by starting
top-down from S

= New incomplete states are created by
advancing existing states as new constituents
are discovered

= New complete states are created in the same
way.

51

*

More specifically...
1. Predict all the states you can upfront
2. Read a word
1. Extend states based on matches
2. Generate new predictions
3. Go to step 2
3. When you're out of words, look at the chart

to see if you have a winner

52

"~ CoreEarley Code

function EARLEY-PARSE(words, grammar) returns chart

ENQUEUE((y — e S, [0,0]),chart[0])
for i — from O to LENGTH(words) do
for each state in chart|[i] do
if INCOMPLETE?(state) and
NEXT-CAT(state) 1s not a part of speech then
PREDICTOR(state)
elseif INCOMPLETE?(state) and
NEXT-CAT(state) 1s a part of speech then
SCANNER(state)
else
COMPLETER(state)
end
end
return(chart)

53

" Earley Code

procedure PREDICTOR((A — o ¢ B B. [i, j]))
for each (B — y) in GRAMMAR-RULES-FOR(B, grammar) do
ENQUEUE((B — e 7, [, j]).chart[j])
end

procedure SCANNER((A — a e B f, [i,]]))
if B C PARTS-OF-SPEECH(word[j]) then
ENQUEUE((B — word|j], [j,j+ 1]),chart[j+1])

procedure COMPLETER((B — 7 e, [j.k])
for each (A — o ¢ B f3, [i, j]) in chart[j] do
ENQUEUE((A — a B e 3, [i,k]),chart[k])
end

54

» Book that flight

= We should find... an S from 0 to 3 that is a
completed state...

95

W

SO y — oS 0,0] Dummy start state
S1 S — eNPVP 0,0] Predictor
S2 S — e Aux NP VP 0,0] Predictor
S3 S — o VP 0,0] Predictor
S4 NP — e Pronoun 0,0] Predictor
S5 NP — e Proper-Noun 0,0] Predictor
S6 NP — e Det Nominal 0,0] Predictor
S7 VP — e Verb 0,0] Predictor
S8 VP — e Verb NP 0,0] Predictor
S9 VP — e Verb NP PP 0,0] Predictor
S10 VP — e Verb PP 0,0] Predictor
S11 VP — e VP PP 0,0] Predictor

56

~ Chartf1]

S12 Verb — book e 0,1] Scanner
S13 VP — Verb e 0,1] Completer
S14 VP — Verb ¢ NP 0,1] Completer
S15 VP — Verb ¢ NP PP 0,1] Completer
S16 VP — Verb e PP 0,1] Completer
S17 S — VPe 0,1] Completer
S18 VP — VP e PP 0,1] Completer
S19 NP — e Pronoun 1,1] Predictor
S20 NP — e Proper-Noun 1,1] Predictor
S21 NP — e Det Nominal 1,1] Predictor
S22 PP — e Prep NP 1,1] Predictor

o7

" Charts[2] and [3]

S23
S24
S25
S26
S27

S238
S29
S30
S31
S32
S33
S34
S35
S36
S37

Det — that e

NP — Det ¢ Nominal
Nominal — e Noun
Nominal — e Nominal Noun
Nominal — e Nominal PP

Noun — flight e

Nominal — Noun e

NP — Det Nominal
Nominal — Nominal ¢ Noun
Nominal — Nominal ¢ PP
VP — Verb NP e

VP — Verb NP e PP

PP — e Prep NP

S — VPoe

VP — VP e PP

1,2
1,2
2,2
2,2
2,2
2,3
2,3
153
2,3
2,3
(035
0.3
3,3]
0.3
0,3

Scanner
Completer
Predictor
Predictor
Predictor

Scanner
Completer
Completer
Completer
Completer
Completer
Completer

Predictor
Completer
Completer

58

 Efficiency

= For such a simple example, there seems to
be a lot of useless stuff in there.

= Why?

* It's predicting things that aren't consistent
with the input
*That's the flipside to the CKY problem.

59

= As with CKY that isn’t a parser until we add
the backpointers so that each state knows
where it came from.

60

» Did we solve it?

61

Amgllgmlty

= No...

= Both CKY and Earley will result in multiple S
structures for the [0,N] table entry.

= They both efficiently store the sub-parts that
are shared between multiple parses.

= And they obviously avoid re-deriving those
sub-parts.

= But neither can tell us which one is right.

62

W

» In most cases, humans don’t notice
incidental ambiguity (lexical or syntactic).
It is resolved on the fly and never noticed.

= WWe can model that with probabilities.

63

