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= A derivation is a
sequence of rules
applied to a string
that accounts for
that string

= Covers all the
elements in the
string

= Covers only the

elements in the
string
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EU Erammar

Grammar Rules Examples
S — NPVP I + want a morning flight
NP Pronoun I

g

| Proper-Noun Los Angeles
| Det Nominal a + flight
_—
|

Nominal Nominal Noun  morning + flight
Noun flights
VP — Verb do
Verb NP want + a flight
Verb NP PP leave + Boston + 1n the morning
Verb PP leaving + on Thursday

PP — Preposition NP  from + Los Angeles




» Parsing with CFGs
= Bottom-up, top-down
= Ambiguity
= CKY parsing




*mg

» Parsing with CFGs refers to the task of
assigning proper trees to input strings

= Proper here means a tree that covers all
and only the elements of the input and has
an S at the top

» [t doesn’t actually mean that the system
can select the correct tree from among all
the possible trees



~ parsing

= As with everything of interest, parsing
involves a search which involves the
making of choices

= We'll start with some basic (meaning bad)
methods before moving on to the one or
two that you need to know



!OI‘ IuOW

= Assume...
= You have all the words already in some buffer
= The input isn’t POS tagged
= We won't worry about morphological analysis
= All the words are known

= These are all problematic in various ways, and
would have to be addressed in real
applications.



"~ Top-Down Search

» Since we're trying to find trees rooted with
an S (Sentences), why not start with the
rules that give us an S.

= Then we can work our way down from
there to the words.






"~ Bottom-Up Parsing

= Of course, we also want trees that cover
the input words. So we might also start
with trees that link up with the words in
the right way.

= Then work your way up from there to
larger and larger trees.
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Book that flight
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Top-Down ana Bottom-Up

= Top-down
= Only searches for trees that can be answers
(i.e. S's)
= But also suggests trees that are not consistent
with any of the words

= Bottom-up
= Only forms trees consistent with the words
= But suggests trees that make no sense
globally
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Eontrol

= Of course, in both cases we left out how to
keep track of the search space and how to

make choices
= Which node to try to expand next
= Which grammar rule to use to expand a node

= One approach is called backtracking.
= Make a choice, if it works out then fine
= If not then back up and make a different
choice
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= Even with the best filtering, backtracking
methods are doomed because of two

inter-related problems
= Ambiguity
= Shared subproblems
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are U ropiems

= No matter what kind of search (top-down

or bottom-up or mixed) that we choose.

= We don’t want to redo work we've already
done.

= Unfortunately, naive backtracking will lead to
duplicated work.
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= Consider
= A flight from Indianapolis to Houston on TWA
‘ NP
D/\le
|
) Nomi{\PP
—_
on TWA
Nominal PP
—_
Nomsaal Bp to Houston
| /\

Noun from Indianapolis

flight
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are U ropiems

= Assume a top-down parse making choices
among the various Nominal rules.

= In particular, between these two
= Nominal -> Noun
= Nominal -> Nominal PP

» Statically choosing the rules in this order
leads to the following bad results...
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N
Det Nominal
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NP f

Det Nominad
| /\
a
Nominal
/\ /\

Nominal PP to Houston...

Noun from Indianapolis

flight
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Eynamllc Brogrammllng

= DP search methods fill tables with partial results

and thereby
= Avoid doing avoidable repeated work
= Solve exponential problems in polynomial time (well,
no not really)
= Efficiently store ambiguous structures with shared

sub-parts.
= We'll cover two approaches that roughly
correspond to top-down and bottom-up

approaches.
= CKY
= Earley
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!E! Earsmg

= First we'll limit our grammar to epsilon-
free, binary rules (more later)

= Consider the rule A — BC

= If there is an A somewhere in the input
then there must be a B followed by a C in
the input.

= If the A spans from i to j in the input then

there must be some k st. i<k<]j
= Je. The B splits from the C someplace.
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Problem

» What if your grammar isn’t binary?
= As in the case of the TreeBank grammar?
= Convert it to binary... any arbitrary CFG
can be rewritten into Chomsky-Normal
Form automatically.
= What does this mean?
= The resulting grammar accepts (and rejects) the

same set of strings as the original grammar.
= But the resulting derivations (trees) are different.
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= More specifically, we want our rules to be
of the form
A— BC
Or
A— w

That is, rules can expand to either 2 non-
terminals or to a single terminal.
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Binarization Intuition

» Eliminate chains of unit productions.

» Introduce new intermediate non-terminals
into the grammar that distribute rules with
length > 2 over several rules.
=So0...5S — AB Cturns into
S - X Cand
X—-AB
Where X is a symbol that doesn’t occur

anywhere else in the the grammar.
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!ample E! !rammar

Grammar Lexicon
S — NPVP Det — that | this | a
S — Aux NP VP Noun — book | flight | meal | money
S — VP Verb — Dbook | include | prefer

NP — Pronoun

NP — Proper-Noiin
NP — Det Nominal
Nominal — Noun
Nominal — Nominal Noun
Nominal — Nominal PP
VP — Verb

VP — Verb NP

VP — Verb NP PP

VP — Verb PP

VP — VP PP

PP — Preposition NP

Pronoun — I| she | me

Proper-Noun — Houston | NWA

Aux — does

Preposition — from | to | on | near | through
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onversion

2 Grammar 2 in CNF
S — NPVP S — NPVP
S — Aux NP VP S — X1VP
X1 — Aux NP
S — VP S — Dbook | include | prefer
S — Verb NP
S — X2 PP
S — Verb PP
S — VPPP

NP — Pronoun

NP — Proper-Noun

NP — Det Nominal
Nominal — Noun
Nominal — Nominal Noun
Nominal — Nominal PP
VP — Verb

VP — Verb NP

VP — Verb NP PP

VP — Verb PP
VP — VP PP
PP — Preposition NP

NP — I| she| me

NP — TWA | Houston

NP — Det Nominal

Nominal — book | flight | meal | money
Nominal — Nominal Noun
Nominal — Nominal PP

VP — book | include | prefer
VP — Verb NP

VP — X2 PP

X2 — Verb NP

VP — Verb PP

VP — VP PP

PP — Preposition NP
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= S0 let’s build a table so that an A spanning
from i to j in the input is placed in cell [i,j]
in the table.
= SO0 a hon-terminal spanning an entire
string will sit in cell [0, n]
= Hopefully an S
= If we build the table bottom-up, we’ll know

that the parts of the A must go from i to k
and from k to j, for some K.
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- eky

= Meaning that for a rule like A — B C we

should look for a B in

[i,k] and a Cin [k,j].

= In other words, if we think there might be
an A spanning i,j in the input... AND

A—BCisaruleint

= There must be a B in
for some i<k<j

ne grammar THEN

i,k] and a Cin [k,j]
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- eky

= So to fill the table loop over the cell[i,j]

values in some systematic way
= What constraint should we put on that
systematic search?

= For each cell, loop over the appropriate k
values to search for things to add.
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"~ CKY Algorithm

function CKY-PARSE(words, grammar) returns table

for j<— from 1 to LENGTH(words) do
table[j—1,j1—{A| A — words[j] € grammar}
for i — from j — 2 downto O do
for k—i+1to j—1do
tableli j] < table[i j] U
{A|A — BC € grammar,
B € tableli, k],
C € tablelk,j|}
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= Is that really a parser?
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Hote

= We arranged the loops to fill the table a
column at a time, from left to right, bottom

to top.
= This assures us that whenever we're filling a
cell, the parts needed to fill it are already in
the table (to the left and below)
= [t's somewhat natural in that it processes the

input a left to right a word at a time
= Known as online
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Book the flight through  Houston
S, VP, Verb S,VP,X2 S,VP.X2
Nominal,
Noun
[0,1] [0,2] [0,3] [0,4] [0,9]
Det NP NP
[1,2] [1,3] [1.4] [1,5]
Nominal, Nominal
Noun
2,3 [2,4] [2,5]
Prep PP
[3.4] [3,9]
NP,
Proper-
Noun
|4,5|
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Book the flight through  Houston
S, VP, Verb, S,VP, X2
Nominal,
Noun
[0,1] [0,2] [0,3] [0,4] [0,9]
Det NP
1,2 [1,3] [1,4] [1,9]
Nominal, Nominal
Noun
2,3 [2,4] [2,9]
Prep
[3.4] [3,9]
1 NP,
Proper-
Noun
|4,5|
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Book the flight through  Houston
S, VP, Verb, S,VP,X2
Nominal,
Noun
[0,1] [0,2] [0,3] [0,4] [0,9]
Det NP NP
[1,2 [1,3] [1.4] [1,5]
Nominal,
Noun
|2,3| [2,4] [2,5]
Prep «<—— PP
[3,4] [3,511
NP,
Proper-
Noun
4,5
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Book the flight through  Houston
S, VP, Verb, S,VP,X2
Nominal,
Noun
[0,1] [0,2] [0,3] [0,4] [0,5]
Det NP NP
[1,2] [1,3] [1,4] [1,5]
Nominal,< Nominal
Noun
[2,3] [2,4] [2,9]
Prep PP
[3,4] [3,9]
NP,
Proper-
Noun

|4,5|
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Book the flight through  Houston
S, VP, Verb, S,VP, X2
Nominal,
Noun
[0,1] [0,2] [0,3] [0,4] [0,5]
Det <« NP NP
[1,2] [1,3] [1.4] [1{5]
Nominal, Nominal
Noun
2,3 [2,4] [2,5]
Prep PP
[3,4] [3,5]
—NP,
Proper-
Noun
|4,5|
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Book the flight through  Houston
S, VP, Verbje S4.VP, X2
Nominal, S,
Noun VP < S?' VP
X2 <« S3
[0,1] [0,2] [0,3] [0,4]
Det NP NP
[1,2] [1,3] [1,4] [1,5]
Nominal, Nomina
Noun
2,3 [2,4] [2,5]
% Prep tpv
[3.4] [3,9]
1 NP,
Proper-
Noun
[4,5!
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e
CKY Notes

= Since it's bottom up, CKY populates the

table with a lot of phantom constituents.

= Segments that by themselves are constituents
but cannot really occur in the context in which
they are being suggested.

= To avoid this we can switch to a top-down
control strategy

= Or we can add some kind of filtering that
blocks constituents where they can not
happen in a final analysis.
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W

= Allows arbitrary CFGs
= Top-down control

= Fills a table in a single sweep over the
iInput
= Table is length N+1; N is number of words

= Table entries represent
= Completed constituents and their locations
= [n-progress constituents
= Predicted constituents

47



» The table-entries are called states and are
represented with dotted-rules.

A VP is predicted

S—-VP
NP — Det - Nominal
VP — V NP -

An NP is in

Drogress

A VP has been found
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= S— e VP[0,0]

= NP — Det ¢ NOminal
[1,2]

= VP —= VNP e [0,3]

A VP is predicted at the start
of the sentence

An NP is in progress; the Det
goes from 1 to 2

A VP has been found starting
at 0 and ending at 3
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*ar ey

= As with most dynamic programming
approaches, the answer is found by
looking in the table in the right place.

= In this case, there should be an S state in
the final column that spans from 0 to N

and is complete. That is,
= S— e [O,N]

» If that's the case you're done.
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!a rIey

= So sweep through the table from 0 to N...

= New predicted states are created by starting
top-down from S

= New incomplete states are created by
advancing existing states as new constituents
are discovered

= New complete states are created in the same
way.
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*

More specifically...
1. Predict all the states you can upfront
2. Read a word
1. Extend states based on matches
2. Generate new predictions
3. Go to step 2
3. When you're out of words, look at the chart

to see if you have a winner
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"~ CoreEarley Code

function EARLEY-PARSE(words, grammar) returns chart

ENQUEUE((y — e S, [0,0]),chart[0])
for i — from O to LENGTH(words) do
for each state in chart|[i] do
if INCOMPLETE?(state) and
NEXT-CAT(state) 1s not a part of speech then
PREDICTOR(state)
elseif INCOMPLETE?(state) and
NEXT-CAT(state) 1s a part of speech then
SCANNER(state)
else
COMPLETER(state)
end
end
return(chart)
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" Earley Code

procedure PREDICTOR((A — o ¢ B B. [i, j]))
for each (B — y) in GRAMMAR-RULES-FOR(B, grammar) do
ENQUEUE((B — e 7, [, j]).chart[j])
end

procedure SCANNER((A — a e B f, [i,]]))
if B C PARTS-OF-SPEECH(word[j]) then
ENQUEUE((B — word|j], [j,j+ 1]),chart[j+1])

procedure COMPLETER((B — 7 e, [j.k])
for each (A — o ¢ B f3, [i, j]) in chart[j] do
ENQUEUE((A — a B e 3, [i,k]),chart[k])
end
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» Book that flight

= We should find... an S from 0 to 3 that is a
completed state...
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SO y — oS 0,0] Dummy start state
S1 S — eNPVP 0,0] Predictor
S2 S — e Aux NP VP 0,0] Predictor
S3 S — o VP 0,0] Predictor
S4 NP — e Pronoun 0,0] Predictor
S5 NP — e Proper-Noun 0,0] Predictor
S6 NP — e Det Nominal 0,0] Predictor
S7 VP — e Verb 0,0] Predictor
S8 VP — e Verb NP 0,0] Predictor
S9 VP — e Verb NP PP 0,0] Predictor
S10 VP — e Verb PP 0,0] Predictor
S11 VP — e VP PP 0,0] Predictor
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~ Chartf1]

S12 Verb — book e 0,1] Scanner
S13 VP — Verb e 0,1] Completer
S14 VP — Verb ¢ NP 0,1] Completer
S15 VP — Verb ¢ NP PP 0,1] Completer
S16 VP — Verb e PP 0,1] Completer
S17 S — VPe 0,1] Completer
S18 VP — VP e PP 0,1] Completer
S19 NP — e Pronoun 1,1] Predictor
S20 NP — e Proper-Noun 1,1] Predictor
S21 NP — e Det Nominal 1,1] Predictor
S22 PP — e Prep NP 1,1] Predictor
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" Charts[2] and [3]

S23
S24
S25
S26
S27

S238
S29
S30
S31
S32
S33
S34
S35
S36
S37

Det — that e

NP — Det ¢ Nominal
Nominal — e Noun
Nominal — e Nominal Noun
Nominal — e Nominal PP

Noun — flight e

Nominal — Noun e

NP — Det Nominal
Nominal — Nominal ¢ Noun
Nominal — Nominal ¢ PP
VP — Verb NP e

VP — Verb NP e PP

PP — e Prep NP

S — VPoe

VP — VP e PP

1,2
1,2
2,2
2,2
2,2
2,3
2,3
153
2,3
2,3
(035
0.3
3,3]
0.3
0,3

Scanner
Completer
Predictor
Predictor
Predictor

Scanner
Completer
Completer
Completer
Completer
Completer
Completer

Predictor
Completer
Completer
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 Efficiency

= For such a simple example, there seems to
be a lot of useless stuff in there.

= Why?

* It's predicting things that aren't consistent
with the input
*That's the flipside to the CKY problem.
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= As with CKY that isn’t a parser until we add
the backpointers so that each state knows
where it came from.
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» Did we solve it?
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Amgllgmlty

= No...

= Both CKY and Earley will result in multiple S
structures for the [0,N] table entry.

= They both efficiently store the sub-parts that
are shared between multiple parses.

= And they obviously avoid re-deriving those
sub-parts.

= But neither can tell us which one is right.
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» In most cases, humans don’t notice
incidental ambiguity (lexical or syntactic).
It is resolved on the fly and never noticed.

= WWe can model that with probabilities.
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