
Parsing

borrowing from 
Daniel Jurafsky and James Martin

2

Derivations

▪ A derivation is a
sequence of rules
applied to a string
that accounts for
that string
▪ Covers all the

elements in the
string

▪ Covers only the
elements in the
string

3

L0 Grammar

4

This chunk

▪ Parsing with CFGs
▪ Bottom-up, top-down
▪ Ambiguity
▪ CKY parsing

5

Parsing

▪ Parsing with CFGs refers to the task of
assigning proper trees to input strings

▪ Proper here means a tree that covers all
and only the elements of the input and has
an S at the top

▪ It doesn’t actually mean that the system
can select the correct tree from among all
the possible trees

6

Parsing

▪ As with everything of interest, parsing
involves a search which involves the
making of choices

▪ We’ll start with some basic (meaning bad)
methods before moving on to the one or
two that you need to know

7

For Now

▪ Assume…
▪ You have all the words already in some buffer
▪ The input isn’t POS tagged
▪ We won’t worry about morphological analysis
▪ All the words are known

▪ These are all problematic in various ways, and
would have to be addressed in real
applications.

8

Top-Down Search

▪ Since we’re trying to find trees rooted with
an S (Sentences), why not start with the
rules that give us an S.

▪ Then we can work our way down from
there to the words.

9

Top Down Space

10

Bottom-Up Parsing

▪ Of course, we also want trees that cover
the input words. So we might also start
with trees that link up with the words in
the right way.

▪ Then work your way up from there to
larger and larger trees.

11

Bottom-Up Search

12

Bottom-Up Search

13

Bottom-Up Search

14

Bottom-Up Search

15

Bottom-Up Search

16

Top-Down and Bottom-Up

▪ Top-down
▪ Only searches for trees that can be answers

(i.e. S’s)
▪ But also suggests trees that are not consistent

with any of the words

▪ Bottom-up
▪ Only forms trees consistent with the words
▪ But suggests trees that make no sense

globally

17

Control

▪ Of course, in both cases we left out how to
keep track of the search space and how to
make choices
▪ Which node to try to expand next
▪ Which grammar rule to use to expand a node

▪ One approach is called backtracking.
▪ Make a choice, if it works out then fine
▪ If not then back up and make a different

choice

18

Problems

▪ Even with the best filtering, backtracking
methods are doomed because of two
inter-related problems
▪ Ambiguity
▪ Shared subproblems

19

Ambiguity

20

Shared Sub-Problems

▪ No matter what kind of search (top-down
or bottom-up or mixed) that we choose.
▪ We don’t want to redo work we’ve already

done.
▪ Unfortunately, naïve backtracking will lead to

duplicated work.

21

Shared Sub-Problems

▪ Consider
▪ A flight from Indianapolis to Houston on TWA

22

Shared Sub-Problems

▪ Assume a top-down parse making choices
among the various Nominal rules.

▪ In particular, between these two
▪ Nominal -> Noun
▪ Nominal -> Nominal PP

▪ Statically choosing the rules in this order
leads to the following bad results...

23

Shared Sub-Problems

24

Shared Sub-Problems

25

Shared Sub-Problems

26

Shared Sub-Problems

27

Dynamic Programming

▪ DP search methods fill tables with partial results
and thereby
▪ Avoid doing avoidable repeated work
▪ Solve exponential problems in polynomial time (well,

no not really)
▪ Efficiently store ambiguous structures with shared

sub-parts.
▪ We’ll cover two approaches that roughly

correspond to top-down and bottom-up
approaches.
▪ CKY
▪ Earley

28

CKY Parsing

▪ First we’ll limit our grammar to epsilon-
free, binary rules (more later)

▪ Consider the rule A → BC
▪ If there is an A somewhere in the input

then there must be a B followed by a C in
the input.

▪ If the A spans from i to j in the input then
there must be some k st. i<k<j
▪ Ie. The B splits from the C someplace.

29

Problem

▪ What if your grammar isn’t binary?
▪ As in the case of the TreeBank grammar?

▪ Convert it to binary… any arbitrary CFG
can be rewritten into Chomsky-Normal
Form automatically.

▪ What does this mean?
▪ The resulting grammar accepts (and rejects) the

same set of strings as the original grammar.
▪ But the resulting derivations (trees) are different.

30

Problem

▪ More specifically, we want our rules to be
of the form
A → B C
Or
A → w

That is, rules can expand to either 2 non-
terminals or to a single terminal.

31

Binarization Intuition

▪ Eliminate chains of unit productions.
▪ Introduce new intermediate non-terminals

into the grammar that distribute rules with
length > 2 over several rules.
▪ So… S → A B C turns into
S → X C and
X → A B
Where X is a symbol that doesn’t occur

anywhere else in the the grammar.

32

Sample L1 Grammar

33

CNF Conversion

34

CKY

▪ So let’s build a table so that an A spanning
from i to j in the input is placed in cell [i,j]
in the table.

▪ So a non-terminal spanning an entire
string will sit in cell [0, n]
▪ Hopefully an S

▪ If we build the table bottom-up, we’ll know
that the parts of the A must go from i to k
and from k to j, for some k.

35

CKY

▪ Meaning that for a rule like A → B C we
should look for a B in [i,k] and a C in [k,j].

▪ In other words, if we think there might be
an A spanning i,j in the input… AND

 A → B C is a rule in the grammar THEN
▪ There must be a B in [i,k] and a C in [k,j]

for some i<k<j

36

CKY

▪ So to fill the table loop over the cell[i,j]
values in some systematic way
▪ What constraint should we put on that

systematic search?

▪ For each cell, loop over the appropriate k
values to search for things to add.

37

CKY Algorithm

38

CKY Parsing

▪ Is that really a parser?

39

Note

▪ We arranged the loops to fill the table a
column at a time, from left to right, bottom
to top.
▪ This assures us that whenever we’re filling a

cell, the parts needed to fill it are already in
the table (to the left and below)

▪ It’s somewhat natural in that it processes the
input a left to right a word at a time
▪ Known as online

40

Example

41

Example

Filling column 5

42

Example

43

Example

44

Example

45

Example

46

CKY Notes

▪ Since it’s bottom up, CKY populates the
table with a lot of phantom constituents.
▪ Segments that by themselves are constituents

but cannot really occur in the context in which
they are being suggested.

▪ To avoid this we can switch to a top-down
control strategy

▪ Or we can add some kind of filtering that
blocks constituents where they can not
happen in a final analysis.

47

Earley Parsing

▪ Allows arbitrary CFGs
▪ Top-down control
▪ Fills a table in a single sweep over the

input
▪ Table is length N+1; N is number of words
▪ Table entries represent
▪ Completed constituents and their locations
▪ In-progress constituents
▪ Predicted constituents

48

States

▪ The table-entries are called states and are
represented with dotted-rules.
S → · VP A VP is predicted

NP → Det · Nominal An NP is in progress

VP → V NP · A VP has been found

49

States/Locations

▪ S → ● VP [0,0]

▪ NP → Det ● Nominal
[1,2]

▪ VP → V NP ● [0,3]

▪ A VP is predicted at the start
of the sentence

▪ An NP is in progress; the Det
goes from 1 to 2

▪ A VP has been found starting
at 0 and ending at 3

50

Earley

▪ As with most dynamic programming
approaches, the answer is found by
looking in the table in the right place.

▪ In this case, there should be an S state in
the final column that spans from 0 to N
and is complete. That is,
▪ S → α ● [0,N]

▪ If that’s the case you’re done.

51

Earley

▪ So sweep through the table from 0 to N…
▪ New predicted states are created by starting

top-down from S
▪ New incomplete states are created by

advancing existing states as new constituents
are discovered

▪ New complete states are created in the same
way.

52

Earley

▪ More specifically…
1. Predict all the states you can upfront
2. Read a word

1. Extend states based on matches
2. Generate new predictions
3. Go to step 2

3. When you’re out of words, look at the chart
to see if you have a winner

53

Core Earley Code

54

Earley Code

55

Example

▪ Book that flight
▪ We should find… an S from 0 to 3 that is a

completed state…

56

Chart[0]

Note that given a grammar, these entries are the
same for all inputs; they can be pre-loaded.

57

Chart[1]

58

Charts[2] and [3]

59

Efficiency

▪ For such a simple example, there seems to
be a lot of useless stuff in there.

▪ Why?

• It’s predicting things that aren’t consistent
with the input
•That’s the flipside to the CKY problem.

60

Details

▪ As with CKY that isn’t a parser until we add
the backpointers so that each state knows
where it came from.

61

Back to Ambiguity

▪ Did we solve it?

62

Ambiguity

▪ No…
▪ Both CKY and Earley will result in multiple S

structures for the [0,N] table entry.
▪ They both efficiently store the sub-parts that

are shared between multiple parses.
▪ And they obviously avoid re-deriving those

sub-parts.
▪ But neither can tell us which one is right.

63

Ambiguity

▪ In most cases, humans don’t notice
incidental ambiguity (lexical or syntactic).
It is resolved on the fly and never noticed.

▪ We can model that with probabilities.

