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Derivations

▪ A derivation is a 
sequence of rules 
applied to a string 
that accounts for 
that string 
▪ Covers all the 

elements in the 
string 

▪ Covers only the 
elements in the 
string
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L0 Grammar
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This chunk

▪ Parsing with CFGs 
▪ Bottom-up, top-down 
▪ Ambiguity 
▪ CKY parsing
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Parsing

▪ Parsing with CFGs refers to the task of 
assigning proper trees to input strings 

▪ Proper here means a tree that covers all 
and only the elements of the input and has 
an S at the top 

▪ It doesn’t actually mean that the system 
can select the correct tree from among all 
the possible trees
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Parsing

▪ As with everything of interest, parsing 
involves a search which involves the 
making of choices 

▪ We’ll start with some basic (meaning bad) 
methods before moving on to the one or 
two that you need to know 
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For Now

▪ Assume… 
▪ You have all the words already in some buffer 
▪ The input isn’t POS tagged 
▪ We won’t worry about morphological analysis 
▪ All the words are known 

▪ These are all problematic in various ways, and 
would have to be addressed in real 
applications.
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Top-Down Search

▪ Since we’re trying to find trees rooted with 
an S (Sentences), why not start with the 
rules that give us an S. 

▪ Then we can work our way down from 
there to the words.
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Top Down Space
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Bottom-Up Parsing

▪ Of course, we also want trees that cover 
the input words. So we might also start 
with trees that link up with the words in 
the right way. 

▪ Then work your way up from there to 
larger and larger trees.



11

Bottom-Up Search
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Bottom-Up Search
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Bottom-Up Search
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Bottom-Up Search 
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Bottom-Up Search
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Top-Down and Bottom-Up

▪ Top-down 
▪ Only searches for trees that can be answers 

(i.e. S’s) 
▪ But also suggests trees that are not consistent 

with any of the words 

▪ Bottom-up 
▪ Only forms trees consistent with the words 
▪ But suggests trees that make no sense 

globally
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Control

▪ Of course, in both cases we left out how to 
keep track of the search space and how to 
make choices 
▪ Which node to try to expand next 
▪ Which grammar rule to use to expand a node 

▪ One approach is called backtracking. 
▪ Make a choice, if it works out then fine 
▪ If not then back up and make a different 

choice
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Problems

▪ Even with the best filtering, backtracking 
methods are doomed because of two 
inter-related problems 
▪ Ambiguity 
▪ Shared subproblems
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Ambiguity
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Shared Sub-Problems

▪ No matter what kind of search (top-down 
or bottom-up or mixed) that we choose. 
▪ We don’t want to redo work we’ve already 

done. 
▪ Unfortunately, naïve backtracking will lead to 

duplicated work.
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Shared Sub-Problems

▪ Consider 
▪ A flight from Indianapolis to Houston on TWA



22

Shared Sub-Problems

▪ Assume a top-down parse making choices 
among the various Nominal rules. 

▪ In particular, between these two 
▪ Nominal -> Noun 
▪ Nominal -> Nominal PP 

▪ Statically choosing the rules in this order 
leads to the following bad results...
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Shared Sub-Problems
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Shared Sub-Problems
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Shared Sub-Problems
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Shared Sub-Problems
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Dynamic Programming

▪ DP search methods fill tables with partial results 
and thereby 
▪ Avoid doing avoidable repeated work 
▪ Solve exponential problems in polynomial time (well, 

no not really) 
▪ Efficiently store ambiguous structures with shared 

sub-parts. 
▪ We’ll cover two approaches that roughly 

correspond to top-down and bottom-up 
approaches. 
▪ CKY 
▪ Earley
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CKY Parsing

▪ First we’ll limit our grammar to epsilon-
free, binary rules (more later) 

▪ Consider the rule A  → BC 
▪ If there is an A somewhere in the input 

then there must be a B followed by a C in 
the input. 

▪ If the A spans from i to j in the input then 
there must be some k st. i<k<j 
▪ Ie. The B splits from the C someplace.
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Problem

▪ What if your grammar isn’t binary? 
▪ As in the case of the TreeBank grammar? 

▪ Convert it to binary… any arbitrary CFG 
can be rewritten into Chomsky-Normal 
Form automatically. 

▪ What does this mean? 
▪ The resulting grammar accepts (and rejects) the 

same set of strings as the original grammar. 
▪ But the resulting derivations (trees) are different.
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Problem

▪ More specifically, we want our rules to be 
of the form 
A → B C 
Or 
A →  w 

That is, rules can expand to either 2 non-
terminals or to a single terminal.
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Binarization Intuition

▪ Eliminate chains of unit productions. 
▪ Introduce new intermediate non-terminals 

into the grammar that distribute rules with 
length > 2 over several rules.  
▪ So… S → A B C turns into  
S → X C and 
X → A B 
Where X is a symbol that doesn’t occur 

anywhere else in the the grammar.
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Sample L1 Grammar
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CNF Conversion
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CKY

▪ So let’s build a table so that an A spanning 
from i to j in the input is placed in cell [i,j] 
in the table. 

▪ So a non-terminal spanning an entire 
string will sit in cell [0, n] 
▪ Hopefully an S 

▪ If we build the table bottom-up, we’ll know 
that the parts of the A must go from i to k 
and from k to j, for some k.
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CKY

▪ Meaning that for a rule like A → B C we 
should look for a B in [i,k] and a C in [k,j]. 

▪ In other words, if we think there might be 
an A spanning i,j in the input… AND  

   A → B C is a rule in the grammar THEN 
▪ There must be a B in [i,k] and a C in [k,j] 

for some i<k<j
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CKY

▪ So to fill the table loop over the cell[i,j] 
values in some systematic way 
▪ What constraint should we put on that 

systematic search? 

▪ For each cell, loop over the appropriate k 
values to search for things to add.
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CKY Algorithm
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CKY Parsing

▪ Is that really a parser?
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Note

▪ We arranged the loops to fill the table a 
column at a time, from left to right, bottom 
to top.  
▪ This assures us that whenever we’re filling a 

cell, the parts needed to fill it are already in 
the table (to the left and below) 

▪ It’s somewhat natural in that it processes the 
input a left to right a word at a time 
▪ Known as online
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Example
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Example

Filling column 5
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Example
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Example
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Example
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Example
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CKY Notes

▪ Since it’s bottom up, CKY populates the 
table with a lot of phantom constituents. 
▪ Segments that by themselves are constituents 

but cannot really occur in the context in which 
they are being suggested. 

▪ To avoid this we can switch to a top-down 
control strategy 

▪ Or we can add some kind of filtering that 
blocks constituents where they can not 
happen in a final analysis.
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Earley Parsing

▪ Allows arbitrary CFGs 
▪ Top-down control 
▪ Fills a table in a single sweep over the 

input 
▪ Table is length N+1; N is number of words 
▪ Table entries represent 
▪ Completed constituents and their locations 
▪ In-progress constituents 
▪ Predicted constituents
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States

▪ The table-entries are called states and are 
represented with dotted-rules. 
S → · VP   A VP is predicted 

NP → Det · Nominal An NP is in progress 

VP → V NP ·    A VP has been found
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States/Locations

▪ S → ● VP [0,0] 

▪ NP → Det ● Nominal 
[1,2] 

▪ VP → V NP  ●  [0,3]

▪ A VP is predicted at the start 
of the sentence 

▪ An NP is in progress; the Det 
goes from 1 to 2 

▪ A VP has been found starting 
at 0 and ending at 3
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Earley

▪ As with most dynamic programming 
approaches, the answer is found by 
looking in the table in the right place. 

▪ In this case, there should be an S state in 
the final column that spans from 0 to N 
and is complete.  That is, 
▪ S → α ● [0,N] 

▪ If that’s the case you’re done.
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Earley

▪ So sweep through the table from 0 to N… 
▪ New predicted states are created by starting 

top-down from S 
▪ New incomplete states are created by 

advancing existing states as new constituents 
are discovered 

▪ New complete states are created in the same 
way. 
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Earley

▪ More specifically… 
1. Predict all the states you can upfront 
2. Read a word 

1. Extend states based on matches 
2. Generate new predictions 
3. Go to step 2 

3. When you’re out of words, look at the chart 
to see if you have a winner
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Core Earley Code
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Earley Code
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Example

▪ Book that flight 
▪ We should find… an S from 0 to 3 that is a 

completed state…
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Chart[0]

Note that given a grammar, these entries are the 
same for all inputs; they can be pre-loaded.
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Chart[1]
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Charts[2] and [3]
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Efficiency

▪ For such a simple example, there seems to 
be a lot of useless stuff in there. 

▪ Why?

• It’s predicting things that aren’t consistent 
with the input  
•That’s the flipside to the CKY problem.
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Details

▪ As with CKY that isn’t a parser until we add 
the backpointers so that each state knows 
where it came from.
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Back to Ambiguity

▪ Did we solve it?
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Ambiguity

▪ No… 
▪ Both CKY and Earley will result in multiple S 

structures for the [0,N] table entry. 
▪ They both efficiently store the sub-parts that 

are shared between multiple parses. 
▪ And they obviously avoid re-deriving those 

sub-parts. 
▪ But neither can tell us which one is right.
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Ambiguity

▪ In most cases, humans don’t notice 
incidental ambiguity (lexical or syntactic). 
It is resolved on the fly and never noticed. 

▪ We can model that with probabilities.


